Skip to main content
Log in

Efficient 3D object classification by using direct Krawtchouk moment invariants

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we present an efficient set of moment invariants, named Direct Krawtchouk Moment Invariants (DKMI), for 3D objects recognition. This new set of invariants can be directly derived from the Krawtchouk moments, based on algebraic properties of Krawtchouk polynomials. The proposed computation approach is effectively compared with the classical method, which rely on the indirect computation of moment invariants by using the corresponding geometric moment invariants. Several experiments are carried out so as to evaluate the performance of the newly introduced invariants. Invariability property and noise robustness are firstly investigated. Secondly, the numerical stability is discussed. Then, the performance of the proposed moment invariants as pattern features for 3D object classification is compared with the existing Geometric, Krawtchouk, Tchebichef and Hahn Moment Invariants. Finally, a comparative analysis of computational time of these moment invariants is illustrated. The obtained results demonstrate the efficiency and the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

DKMI:

Direct Krawtchouk Moment Invariants

TMI:

Tchebichef Moment Invariants

KMI:

Krawtchouk Moment Invariants

HMI:

Hahn Moment Invariants

GMI:

Geometric Moment Invariantsx

TRR:

Time Reduction Rate

ROI:

Region Of Interest

RST:

Rotation, Scaling and Translation

References

  1. Abu-Mostafa YS, Psaltis D (1984) Recognitive aspects of moment invariants. IEEE Trans Pattern Anal Mach Intell:698–706

    Article  Google Scholar 

  2. Ananth J., Bharathi V. S. (2012) Face image retrieval system using discrete orthogonal moments in

  3. Anuar FM, Setchi R, Lai Y (2013) Trademark image retrieval using an integrated shape descriptor. Expert Syst Appl 40:105–121

    Article  Google Scholar 

  4. Batioua I, Benouini R, Zenkouar K, El Fadili H (2017) Image analysis using new set of separable two-dimensional discrete orthogonal moments based on Racah polynomials. EURASIP J Image Video Process 2017:20

    Article  Google Scholar 

  5. Belkasim SO, Shridhar M, Ahmadi M (1991) Pattern recognition with moment invariants: a comparative study and new results. Pattern Recognit 24:1117–1138

    Article  Google Scholar 

  6. Bharathi VS, Ganesan L (2008) Orthogonal moments based texture analysis of CT liver images. Pattern Recognit Lett 29:1868–1872

    Article  Google Scholar 

  7. Batioua I, Benouini R, Zenkouar K, Zahi A, El Fadili H (2017) 3D image analysis by separable discrete orthogonal moments based on Krawtchouk and Tchebichef polynomials, Pattern Recognit

  8. Camacho-Bello C, Toxqui-Quitl C, Padilla-Vivanco A, Báez-Rojas JJ (2014) High-precision and fast computation of Jacobi-Fourier moments for image description. JOSA A 31:124–134

    Article  Google Scholar 

  9. Chong C-W, Raveendran P, Mukundan R (2003) The scale invariants of pseudo-Zernike moments. Pattern Anal Appl 6:176–184

    Article  MathSciNet  Google Scholar 

  10. Chong C-W, Raveendran P, Mukundan R (2004) Translation and scale invariants of Legendre moments. Pattern Recognit 37:119–129

    Article  Google Scholar 

  11. Comtet L (2012) Advanced combinatorics: the art of finite and infinite expansions. Springer, Berlin

    Google Scholar 

  12. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst Hum: Syst 43:996–1002

    Article  Google Scholar 

  13. Dai XB, Shu HZ, Luo LM, Han G-N, Coatrieux J-L (2010) Reconstruction of tomographic images from limited range projections using discrete Radon transform and Tchebichef moments. Pattern Recognit 43:1152–1164

    Article  Google Scholar 

  14. Deng C, Gao X, Li X, Tao D (2009) A local Tchebichef moments-based robust image watermarking. Signal Process 89:1531–1539

    Article  Google Scholar 

  15. Flusser J, Suk T (1993) Pattern recognition by affine moment invariants. Pattern Recognit 26:167–174

    Article  MathSciNet  Google Scholar 

  16. Flusser J, Suk T, Zitova B (2016) 2D and 3D image analysis by moments. Wiley, New York

    Book  Google Scholar 

  17. Galvez J, Canton M (1993) Normalization and shape recognition of three-dimensional objects by 3D moments. Pattern Recognit 26:667–681

    Article  Google Scholar 

  18. Goh H-A, Chong C-W, Besar R, Abas FS, Sim K-S (2009) Translation and scale invariants of Hahn moments. Int J Image Graph 9:271–285

    Article  Google Scholar 

  19. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8:179–187

    MATH  Google Scholar 

  20. Iscan Z, Dokur Z, Ölmez T (2010) Tumor detection by using Zernike moments on segmented magnetic resonance brain images. Expert Syst Appl 37:2540–2549

    Article  Google Scholar 

  21. Khotanzad A, Hong YH (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12:489–497

    Article  Google Scholar 

  22. Krawtchouk M (1929) On interpolation by means of orthogonal polynomials. Mem Agric Inst Kyiv 4:21–28

    Google Scholar 

  23. Lan X, Ma AJ, Yuen PC (2014) Multi-cue visual tracking using robust feature-level fusion based on joint sparse representation. In: 2014 IEEE Conference on Computer vision and pattern recognition (CVPR). IEEE, pp 1194–1201

  24. Lan X, Ma AJ, Yuen PC, Chellappa R (2015) Joint sparse representation and robust feature-level fusion for multi-cue visual tracking. IEEE Trans Image Process 24:5826–5841

    Article  MathSciNet  Google Scholar 

  25. Lan X, Zhang S, Yuen PC (2016) Robust joint discriminative feature learning for visual tracking. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. AAAI Press, pp 3403–3410

  26. Lan X, Yuen PC, Chellappa R (2017) Robust MIL-based feature template learning for object tracking. In: Thirty-first AAAI conference on artificial intelligence

  27. Lan X, Zhang S, Yuen PC, Chellappa R (2018) Learning common and feature-specific patterns: a novel multiple-sparse-representation-based tracker. IEEE Trans Image Process 27:2022–2037

    Article  MathSciNet  Google Scholar 

  28. Liao SX, Pawlak M (1996) On image analysis by moments. IEEE Trans Pattern Anal Mach Intell 18:254–266

    Article  Google Scholar 

  29. Liao S, Chiang A, Lu Q, Pawlak M (2002) Chinese character recognition via gegenbauer moments. In: 2002 Proceedings 16th International Conference on Pattern Recognition. IEEE, pp 485–488

  30. Liang L, Wei M, Szymczak A, Petrella A, Xie H, Qin J, Wang J, Wang FL (2018) Nonrigid iterative closest points for registration of 3D biomedical surfaces. Opt Lasers Eng 100:141–154

    Article  Google Scholar 

  31. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: Twenty-fourth international joint conference on artificial intelligence

  32. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  33. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: Thirtieth AAAI conference on artificial intelligence

  34. Lo C-H, Don H-S (1989) 3-D moment forms: their construction and application to object identification and positioning. IEEE Trans Pattern Anal Mach Intell 11:1053–1064

    Article  Google Scholar 

  35. Mukundan R (2005) Radial Tchebichef invariants for pattern recognition. In: TENCON 2005 2005 IEEE Reg. 10, IEEE, pp 1–6

  36. Mukundan R, Ramakrishnan K (1998) Moment functions in image analysis—theory and applications. World Scientific

  37. Mukundan R, Ong SH, Lee PA (2001) Image analysis by Tchebichef moments. IEEE Trans Image Process 10:1357–1364

    Article  MathSciNet  Google Scholar 

  38. Ong L-Y, Chong C-W, Besar R (2006) Scale invariants of three-dimensional legendre moments. In: IEEE, pp 1–4

  39. Palaniappan R, Raveendran P, Omatu S (2000) New invariant moments for non-uniformly scaled images. Pattern Anal Appl 3:78–87

    Article  Google Scholar 

  40. Pandey VK, Singh J, Parthasarathy H (2016) Translation and scale invariance of 2D and 3D Hahn moments. In: IEEE, pp 255–259

  41. Ping Z, Wu R, Sheng Y (2002) Image description with Chebyshev-Fourier moments. JOSA A 19:1748–1754

    Article  MathSciNet  Google Scholar 

  42. Raj PA, Venkataramana A (2007) Radial krawtchouk moments for rotational invariant pattern recognition. In: 2007 6th international Conference on Information Communication Signal Processing. IEEE, pp 1–5

  43. Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Trans Pattern Anal Mach Intell:127–136

    Article  Google Scholar 

  44. Sheng Y, Shen L (1994) Orthogonal Fourier-Mellin moments for invariant pattern recognition. JOSA A 11:1748–1757

    Article  Google Scholar 

  45. Siddiqi K, Zhang J, Macrini D, Shokoufandeh A, Bouix S, Dickinson S (2008) Retrieving articulated 3-D models using medial surfaces. Mach Vis Appl 19:261–275

    Article  Google Scholar 

  46. Singh C (2012) An effective image retrieval using the fusion of global and local transforms based features. Opt Laser Technol 44:2249–2259

    Article  Google Scholar 

  47. Singh C (2012) Local and global features based image retrieval system using orthogonal radial moments. Opt Lasers Eng 50:655–667

    Article  Google Scholar 

  48. Singh C, Upneja R (2014) Accurate calculation of high order pseudo-Zernike moments and their numerical stability. Digit Signal Process 27:95–106

    Article  Google Scholar 

  49. Singh C, Walia E, Upneja R (2012) Analysis of algorithms for fast computation of pseudo Zernike moments and their numerical stability. Digit Signal Process 22:1031–1043

    Article  MathSciNet  Google Scholar 

  50. Suk T, Flusser J (2003) Combined blur and affine moment invariants and their use in pattern recognition. Pattern Recognit 36:2895–2907

    Article  Google Scholar 

  51. Suk T, Flusser J, Boldyš J (2015) 3D rotation invariants by complex moments. Pattern Recognit 48:3516–3526

    Article  Google Scholar 

  52. Tchebychev PL (1853) Théorie des mécanismes connus sous le nom de parallélogrammes Imprimerie de l’académie impériale des sciences

  53. Teague MR (1980) Image analysis via the general theory of moments*. JOSA 70:920–930

    Article  MathSciNet  Google Scholar 

  54. Tsougenis ED, Papakostas GA, Koulouriotis DE (2015) Image watermarking via separable moments. Multimed Tools Appl 74:3985–4012

    Article  Google Scholar 

  55. Wei M, Wang J, Guo X, Wu H, Xie H, Wang FL, Qin J (2018) Learning-based 3D surface optimization from medical image reconstruction. Opt Lasers Eng 103:110–118

    Article  Google Scholar 

  56. Wu H, Coatrieux JL, Shu H (2013) New algorithm for constructing and computing scale invariants of 3D Tchebichef moments. Math Probl Eng:2013

  57. Xiao B, Zhang Y, Li L, Li W, Wang G (2016) Explicit Krawtchouk moment invariants for invariant image recognition. J Electron Imag 25:023002–023002

    Article  Google Scholar 

  58. Yang B, Dai M (2011) Image analysis by Gaussian-Hermite moments. Signal Process 91:2290–2303

    Article  Google Scholar 

  59. Yang B, Flusser J, Suk T (2015) 3D rotation invariants of Gaussian-Hermite moments. Pattern Recognit Lett 54:18–26

    Article  Google Scholar 

  60. Yap P-T, Paramesran R, Ong S-H (2003) Image analysis by Krawtchouk moments. IEEE Trans Image Process 12:1367–1377

    Article  MathSciNet  Google Scholar 

  61. Zhang Y, Wen C, Zhang Y, Soh YC (2002) Determination of blur and affine combined invariants by normalization. Pattern Recognit 35:211–221

    Article  Google Scholar 

  62. Zhang L, Xiao W, Qian G, Ji Z (2007) Rotation, scaling, and translation invariant local watermarking technique with Krawtchouk moments. Chin Opt Lett 5:21–24

    Google Scholar 

  63. Zhang H, Shu HZ, Haigron P, Li B-S, Luo LM (2010) Construction of a complete set of orthogonal Fourier-Mellin moment invariants for pattern recognition applications. Image Vis Comput 28:38–44

    Article  Google Scholar 

  64. Zhou J, Shu H, Zhu H, Toumoulin C, Luo L (2005) Image analysis by discrete orthogonal hahn moments. In: Image Analysis Recognition. Springer, pp 524–531

  65. Zhu H, Shu H, Liang J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal Racah moments. Signal Process 87:687–708

    Article  Google Scholar 

  66. Zhu H, Shu H, Zhou J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognit Lett 28:1688–1704

    Article  Google Scholar 

  67. Zhu H, Shu H, Xia T, Luo L, Coatrieux JL (2007) Translation and scale invariants of Tchebichef moments. Pattern Recognit 40:2530–2542

    Article  Google Scholar 

Download references

Acknowledgments

The authors thankfully acknowledge the Laboratory of Intelligent Systems and Applications (LSIA) for his support to achieve this work.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Benouini.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Appendices

Appendix A: Proof of proposition 1

With the help of (41), the translated version of Krawtchouk polynomials can be expressed by a linear combination of monomials as

$$ k_{n}(x-x_{0};p,N) =\sum\limits_{i = 0}^{n} C_{n,i} (x-x_{0})^{i}, $$
(59)

According to the binomial theorem, it is possible to expand any power of xx0 into a sum of the form:

$$ (x-x_{0})^{i}=\sum\limits_{s = 0}^{i}{i \choose s} (-1)^{i-s} x^{s} x_{0}^{i-s}, $$
(60)

and with the help of Proposition 1 we can express xs in terms of Krawtchouk polynomials. Hence, (59) can be written as:

$$ k_{n}(x-x_{0};p,N) =\sum\limits_{i = 0}^{n}\sum\limits_{s = 0}^{i} \sum\limits_{u = 0}^{s} {i \choose s}C_{n,i}D_{s,u} (-1)^{i-s} x_{0}^{i-s} k_{u}(x;p,N). $$
(61)

Similarly we can deduce that,

$$ k_{m}(y-y_{0};p,M) =\sum\limits_{j = 0}^{m}\sum\limits_{t = 0}^{j} \sum\limits_{v = 0}^{t} {j \choose t}C_{m,j}D_{t,v} (-1)^{j-t} y_{0}^{j-t} k_{v}(y;p,M) $$
(62)

and

$$ k_{k}(z-z_{0};p,K) =\sum\limits_{e = 0}^{k}\sum\limits_{f = 0}^{e} \sum\limits_{w = 0}^{f} {e \choose f}C_{k,e}D_{f,w} (-1)^{e-f} z_{0}^{e-f} k_{w}(z;p,N). $$
(63)

As a consequence, by substituting (61), (62) and (63) into (49), we can write \(KM_{nmk}^{t}\) of a translated image in terms of KMuvw of the original image as:

$$ \begin{array}{ll} KM_{nmk}^{t}= &\displaystyle \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{m}\sum\limits_{e = 0}^{k} \sum\limits_{s = 0}^{i}\sum\limits_{t = 0}^{j}\sum\limits_{f = 0}^{e} \sum\limits_{u = 0}^{s}\sum\limits_{v = 0}^{t}\sum\limits_{w = 0}^{f} {i \choose s} {j \choose t} {e \choose f} \\ &\displaystyle \times C_{n,i}C_{m,j}C_{k,e}D_{s,u}D_{t,v}D_{f,w} (-1)^{i-s+j-t+e-f} x_{0}^{i-s} y_{0}^{j-t} z_{0}^{e-f} KM_{uvw}. \end{array} $$
(64)

Therefore, the proof is completed.

Appendix B: Proof of proposition 2

With the help of (40), the deformed version of Krawtchouk polynomials can be expressed as follows:

$$ k_{n}(a_{11} x + a_{12} y + a_{13} z;p,N) =\sum\limits_{i = 0}^{n} C_{n,i} (a_{11} x + a_{12} y + a_{13} z)^{i}. $$
(65)

By using the trinomial theorem, it is possible to write the (65) as:

$$ k_{n}(a_{11} x + a_{12} y + a_{13} z;p,N) =\sum\limits_{i = 0}^{n}\sum\limits_{s = 0}^{i} \sum\limits_{u = 0}^{s} \frac{i!}{s!u!(i-s-u)!} C_{n,i} a_{11}^{s} a_{12}^{u} a_{13}^{i-s-h} x^{s} y^{u} z^{i-s-h}. $$
(66)

Similarly, we can deduce that,

$$ k_{m}(a_{21} x + a_{22} y + a_{23} z;p,M) =\sum\limits_{j = 0}^{m}\sum\limits_{t = 0}^{j} \sum\limits_{v = 0}^{t} \frac{j!}{t!v!(j\,-\,t\,-\,v)!} C_{m,j} a_{21}^{t} a_{22}^{v} a_{23}^{j-t-v} x^{t} y^{v} z^{j-t-v}, $$
(67)

and

$$ k_{k}(a_{31} x + a_{32} y + a_{33} z;p,K) \,=\,\sum\limits_{e = 0}^{k}\sum\limits_{f = 0}^{e} \sum\limits_{w = 0}^{f} \frac{e!}{f!w!(e\,-\,f\,-\,w)!} C_{k,e} a_{31}^{f} a_{32}^{w} a_{33}^{e-f-w} x^{f} y^{w} z^{e-f-w}. $$
(68)

Hence, by substituting (66), (67) and (68) into (54), we can write \(KM_{nmk}^{t}\) of a deformed image in terms of KMuvw of the original image as:

$$ \begin{array}{ll} KM_{nmk}^{d}= &\displaystyle \sum\limits_{i = 0}^{n}\sum\limits_{j = 0}^{m}\sum\limits_{e = 0}^{k} \sum\limits_{s = 0}^{i}\sum\limits_{t = 0}^{j}\sum\limits_{f = 0}^{e} \sum\limits_{u = 0}^{s}\sum\limits_{v = 0}^{t}\sum\limits_{w = 0}^{f} \sum\limits_{r = 0}^{\delta}\sum\limits_{l = 0}^{\sigma}{\sum}_{d = 0}^{\epsilon} \\ &\displaystyle \frac{i!}{s!u!(i-s-u)!} \frac{j!}{t!v!(j-t-v)!} \frac{e!}{f!w!(e-f-w)!} C_{n,i}C_{m,j}C_{k,e} \\ &\displaystyle \times D_{\delta,r}D_{\sigma,l}D_{\epsilon,d} a_{11}^{s} a_{12}^{u} a_{13}^{i-s-h} a_{21}^{t} a_{22}^{v} a_{23}^{j-t-v} a_{31}^{f} a_{32}^{w} a_{33}^{e-f-w} KM_{rld}~, \end{array} $$
(69)

where δ = s + t + f, σ = u + v + w and 𝜖 = ish + jt + efw.

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benouini, R., Batioua, I., Zenkouar, K. et al. Efficient 3D object classification by using direct Krawtchouk moment invariants. Multimed Tools Appl 77, 27517–27542 (2018). https://doi.org/10.1007/s11042-018-5937-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5937-1

Keywords

Navigation