Skip to main content
Log in

Spectral-spatial classification of hyperspectral data using spectral-domain local binary patterns

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

It is of great interest in spectral-spatial features classification for hyperspectral images (HSI) with high spatial resolution. This paper presents a novel Spectral-spatial classification method for improving hyperspectral image classification accuracy. Specifically, a new texture feature extraction algorithm exploits spatial texture feature from spectrum is proposed. It employs local binary patterns (LBPs) in order to extract the image texture feature with respect to spectrum information diversity (SID) to measure the differences of spectrum information. The classifier adopted in this work is support vector machine (SVM) because of its outstanding classification performances. In this paper, two real hyperspectral image datasets are used for testing the performance of the proposed method. Our experimental results from real hyperspectral images indicate that the proposed framework can enhance the classification accuracy compare to traditional alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bandos TV, Bruzzone L, Camps-Valls G (2009) Classification of hyperspectral images with regularized linear discriminant analysis. IEEE Trans Geosc Remote Sens 47(3):862–873

    Article  Google Scholar 

  2. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosc Remote Sen 43(3):480–491

    Article  Google Scholar 

  3. Camps-Valls G et al (2006) Composite kernels for hyperspectral image classification. IEEE Geosci Remote Sens Lett 3(1):93–97

    Article  Google Scholar 

  4. Chang CI (2000) An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans Inf Theory 46(5):1927–1932

    Article  Google Scholar 

  5. Chen C et al (2014) Spectral–spatial preprocessing using multihypothesis prediction for noise-robust hyperspectral image classification. IEEE J Sel Topics Appl Earth Observ Remote Sens 7(4):1047–1059

    Article  Google Scholar 

  6. Di Zenzo S et al (1987) Gaussian maximum likelihood and contextual classification algorithms for multicrop classification. IEEE Trans Geosci Remote Sen GE-25(6):815–824

    Article  Google Scholar 

  7. Doshi NP, Schaefer G, Zhu SY (2015) An evaluation of lbp texture descriptors for the classification of HEp-2 cells. IEEE International Conference on Systems, Man, and Cybernetics IEEE

  8. Fang L, Li S, Duan W, Ren J, Benediktsson JA (2015) Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans Geosci Remote Sens 53(12):6663–6674

    Article  Google Scholar 

  9. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society, pp 817–824

  10. Gu Y et al (2012) Representative multiple Kernel learning for classification in hyperspectral imagery. IEEE Trans Geosc Remote Sen 50(7):2852–2865

    Article  Google Scholar 

  11. Guo Y et al (2017) Learning to hash with optimized anchor embedding for scalable retrieval. IEEE Trans Image Process PP(99):1–1

    Article  MathSciNet  Google Scholar 

  12. Guo Y et al (2017) Zero-shot learning with transferred samples. IEEE Trans Image Process 26(7):3277–3290

    Article  MathSciNet  Google Scholar 

  13. Huang X, Zhang L (2013) An SVM ensemble approach combining spectral, structural, and semantic features for the classification of high-resolution remotely sensed imagery. IEEE Trans Geosc Remote Sen 51(1):257–272

    Article  Google Scholar 

  14. Kumar V, Vijaya KSR, Krishna VV (2015) Face recognition using prominent LBP model. Int J Appl Eng Res 10(2):4373–4384

    Google Scholar 

  15. Li W et al (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosc Remote Sens 50(4):1185–1198

    Article  Google Scholar 

  16. Li J et al (2013) Generalized composite Kernel framework for hyperspectral image classification. IEEE Trans Geosc Remote Sen 51(9):4816–4829

    Article  MathSciNet  Google Scholar 

  17. Li W et al (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosc Remote Sen 53(7):1–13

    Article  Google Scholar 

  18. Lin Z et al (2016) Cross-view retrieval via probability-based semantics-preserving hashing. IEEE Trans Cybern PP(99):1–14

    Google Scholar 

  19. Ma L, Crawford MM, Tian J (2010) Local manifold learning-based, -nearest-neighbor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109

    Google Scholar 

  20. Masood K, Rajpoot N (1945) Texture based classification of hyperspectral colon biopsy samples using CLBP. Proceedings, pp 1011–1014

  21. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosc Remote Sen 42(8):1778–1790

    Article  Google Scholar 

  22. Mura MD et al (2010) Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int J Remote Sens 31(22):5975–5991

    Article  Google Scholar 

  23. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  24. Richards JA (1986) Remote sensing digital image analysis. Remote sensing digital image analysis. Springer-Verlag, Berlin, pp 47–54

    Book  Google Scholar 

  25. Stathakis D, Vasilakos A (2006) Comparison of computational intelligence based classification techniques for remotely sensed optical image classification. IEEE Trans Geosci Remote Sens 44(8):2305–2318

    Article  Google Scholar 

  26. Tuia D et al (2010) Learning relevant image features with multiple-Kernel classification. IEEE Trans Geosc Remote Sen 48(10):3780–3791

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by National Natural Science foundations of China (Grant Nos. 41301382, 61401439, 41604113, 41711530128) and foundation of Key lab of spectral imaging, Xi’an Institute of Optics and Precision Mechanics of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cai-ling Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cl., Ren, J., Wang, Hw. et al. Spectral-spatial classification of hyperspectral data using spectral-domain local binary patterns. Multimed Tools Appl 77, 29889–29903 (2018). https://doi.org/10.1007/s11042-018-5928-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5928-2

Keywords

Navigation