Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 20, pp 27363–27386 | Cite as

Dehazing of outdoor images using notch based integral guided filter

  • Dilbag Singh
  • Vijay Kumar
Article

Abstract

The dehazing problem is an ill-posed and can be regularized by designing an efficient filter to refine the coarse estimated atmospheric veil. The most of existing dehazing techniques suffer from over-saturation, halo artifacts, and gradient reversal artifacts problems. In this paper, a dehazing technique is proposed to remove halo and gradient reversal artifacts problem. In this technique, a notch based integral guided filter is proposed. Moreover, the visibility restoration model is also modified to reduce over-saturation problem. The proposed dehazing technique is compared with seven well-known existing dehazing techniques over ten benchmark hazy images. The experimental results demonstrate that proposed technique is able to remove the haze from hazy images as well as significantly improve the image’s visibility. It also reveals that the restored image has little or no artifacts.

Keywords

Hazy images Dark channel prior Notch coefficient based integral guided filter 

References

  1. 1.
    Anwar MI, Khosla A (2017) Vision enhancement through single image fog removal. Eng Sci Technol Int J 20(3):1075–1083CrossRefGoogle Scholar
  2. 2.
    Chang HH, Chu WC (2012) Restoration algorithm for image noise removal using double bilateral filtering. J Electron Imaging 21(2):023,028–1CrossRefGoogle Scholar
  3. 3.
    Chaudhury KN, Sage D, Unser M (2011) Fast bilateral filtering using trigonometric range kernels. IEEE Trans Image Process 20(12):3376–3382MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chen BH, Huang SC, Cheng FC (2016) A high-efficiency and high-speed gain intervention refinement filter for haze removal. J Display Technol 12(7):753–759CrossRefGoogle Scholar
  5. 5.
    Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901MathSciNetCrossRefGoogle Scholar
  6. 6.
    Chuangbai X, Hongyu Z, Jing Y, Pu Y (2015) Traffic image defogging method based on wls. Infrared Laser Eng 3:052Google Scholar
  7. 7.
    Cosmin Ancuti CDV Codruta O Ancuti (2016)Google Scholar
  8. 8.
    Crebolder JM, Sloan RB (2004) Determining the effects of eyewear fogging on visual task performance. Appl Ergon 35(4):371–381CrossRefGoogle Scholar
  9. 9.
    Cui T, Tian J, Wang E, Tang Y (2017) Single image dehazing by latent region-segmentation based transmission estimation and weighted l1-norm regularisation. IET Image Process 11(2):145–154CrossRefGoogle Scholar
  10. 10.
    Ding W, Li Y, Liu H (2016) Efficient vanishing point detection method in unstructured road environments based on dark channel prior. IET Comput Vis 10 (8):852–860CrossRefGoogle Scholar
  11. 11.
    El Khoury J, Le Moan S, Thomas JB, Mansouri A (2017) Color and sharpness assessment of single image dehazing. Multimedia Tools and Applications:1–22.  https://doi.org/10.1007/s11042-017-5122-y
  12. 12.
    Fan X, Shin H (2016) Road vanishing point detection using weber adaptive local filter and salient-block-wise weighted soft voting. IET Comput Vis 10(6):503–512CrossRefGoogle Scholar
  13. 13.
    Fang S, Shi Q, Cao Y (2013) Adaptive removal of real noise from a single image. J Electron Imaging 22(3):033,014–033,014CrossRefGoogle Scholar
  14. 14.
    Fattal R (2008) Single image dehazing. ACM Trans Graph (TOG) 27(3):72CrossRefGoogle Scholar
  15. 15.
    Fattal R (2014) Dehazing using color-lines. ACM Trans Graph (TOG) 34(1):13CrossRefGoogle Scholar
  16. 16.
    Fu L, Peng G, Song W (2016) Histogram-based cost aggregation strategy with joint bilateral filtering for stereo matching. IET Comput Vis 10(3):173–181CrossRefGoogle Scholar
  17. 17.
    Galdran A, Vazquez-Corral J, Pardo D, Bertalmío M (2017) Fusion-based variational image dehazing. IEEE Signal Process Lett 24(2):151–155zbMATHGoogle Scholar
  18. 18.
    Gibson KB, Nguyen TQ (2013) An analysis of single image defogging methods using a color ellipsoid framework. EURASIP J Image Video Process 2013(1):37CrossRefGoogle Scholar
  19. 19.
    Gu X, Huang X, Tokuta A (2017) Multiscale spatially regularised correlation filters for visual tracking. IET Comput Vis 11(3):220–225CrossRefGoogle Scholar
  20. 20.
    Guo JM, Syue JY, Radzicki V, Lee H (2017) An efficient fusion-based defogging. IEEE Transactions on Image ProcessingGoogle Scholar
  21. 21.
    Guo L, Li S, Hu W, Wu J, Tu B, He W, Ou X, Zhang G (2017) Sub-pixel level defect detection based on notch filter and image registration. International Journal of Pattern Recognition and Artificial Intelligence, pp 1854016Google Scholar
  22. 22.
    Hao D, Li Q, Li C (2017) Single-image-based rain streak removal using multidimensional variational mode decomposition and bilateral filter. J Electron Imaging 26(1):013,020–013,020CrossRefGoogle Scholar
  23. 23.
    Hautière N, Tarel JP, Aubert D (2007) Towards fog-free in-vehicle vision systems through contrast restoration. In: IEEE Conference on Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE, pp 1–8Google Scholar
  24. 24.
    Hautiere N, Tarel JP, Aubert D, Dumont E (2011) Blind contrast enhancement assessment by gradient ratioing at visible edges. Image Anal Stereology 27(2):87–95MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    He K, Sun J, Tang X (2011) Single image haze removal using dark channel prior. IEEE Trans Pattern Anal Mach Intell 33(12):2341–2353CrossRefGoogle Scholar
  26. 26.
    Jang DW, Park RH (2017) Colour image dehazing using near-infrared fusion. IET Image Process 11(8):587–594CrossRefGoogle Scholar
  27. 27.
    Jha DK, Gupta B, Lamba SS (2016) l2-norm-based prior for haze-removal from single image. IET Comput Vis 10(5):331–341CrossRefGoogle Scholar
  28. 28.
    Jiang B, Meng H, Zhao J, Ma X, Jiang S, Wang L, Zhou Y, Ru Y, Ru C (2017a) Single image fog and haze removal based on self-adaptive guided image filter and color channel information of sky region. Multimedia Tools and Applications, pp 1–18Google Scholar
  29. 29.
    Jiang Y, Sun C, Zhao Y, Yang L (2017) Fog density estimation and image defogging based on surrogate modeling for optical depth. IEEE Trans Image Process 26(7):3397–3409MathSciNetCrossRefGoogle Scholar
  30. 30.
    Kishan H, Seelamantula CS (2015) Patch-based and multiresolution optimum bilateral filters for denoising images corrupted by gaussian noise. J Electron Imaging 24(5):053,021–053,021CrossRefGoogle Scholar
  31. 31.
    Koschmieder H (1938) Luftlicht und sichtweite. Naturwissenschaften 26(32):521–528CrossRefGoogle Scholar
  32. 32.
    Li B, Wang S, Zheng J, Zheng L (2014) Single image haze removal using content-adaptive dark channel and post enhancement. IET Comput Vis 8(2):131–140CrossRefGoogle Scholar
  33. 33.
    Li J, Zhang H, Yuan D, Sun M (2015) Single image dehazing using the change of detail prior. Neurocomputing 156:1–11CrossRefGoogle Scholar
  34. 34.
    Li Z, Zheng J, Zhu Z, Yao W, Wu S (2015) Weighted guided image filtering. IEEE Trans Image process 24(1):120–129MathSciNetCrossRefGoogle Scholar
  35. 35.
    Lian X, Pang Y, Yang A (2017) Learning intensity and detail mapping parameters for dehazing. Multimedia Tools and Applications:1–26.  https://doi.org/10.1007/s11042-017-5142-7
  36. 36.
    Liu W, Chen X, Chu X, Wu Y, Lv J (2016) Haze removal for a single inland waterway image using sky segmentation and dark channel prior. IET Image Process 10(12):996–1006CrossRefGoogle Scholar
  37. 37.
    Liu X, Zhang H, Tang YY, Du JX (2016) Scene-adaptive single image dehazing via opening dark channel model. IET Image Process 10(11):877–884CrossRefGoogle Scholar
  38. 38.
    Long J, Shi Z, Tang W, Zhang C (2014) Single remote sensing image dehazing. IEEE Geosci Remote Sens Lett 11(1):59–63CrossRefGoogle Scholar
  39. 39.
    McCartney EJ (1976) Optics of the atmosphere: scattering by molecules and particles. Wiley, New York, p 421Google Scholar
  40. 40.
    MODIS (2016) Global land cover facility. http://glcf.umd.edu/
  41. 41.
    Narasimhan SG, Nayar SK (2003) Contrast restoration of weather degraded images. IEEE Trans Pattern Anal Mach Intell 25(6):713–724CrossRefGoogle Scholar
  42. 42.
    Narasimhan SG, Nayar SK (2003) Interactive (de) weathering of an image using physical models. In: IEEE Workshop on color and photometric Methods in computer Vision. France, vol 6, p 1Google Scholar
  43. 43.
    Nayar SK, Narasimhan SG (1999) Vision in bad weather. In: 1999. The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, vol 2, pp 820–827Google Scholar
  44. 44.
    Nishino K, Kratz L, Lombardi S (2012) Bayesian defogging. Int J Comput Vis 98(3):263–278MathSciNetCrossRefGoogle Scholar
  45. 45.
    Papari G, Idowu N, Varslot T (2016) Fast bilateral filtering for denoising large 3d images. IEEE Trans Image Process 26(1):251–261MathSciNetCrossRefGoogle Scholar
  46. 46.
    Park J, Han JH, Lee BU (2014) Performance of bilateral filtering on gaussian noise. J Electron Imaging 23(4):043,024–043,024CrossRefGoogle Scholar
  47. 47.
    Riaz I, Fan X, Shin H (2016) Single image dehazing with bright object handling. IET Comput Vis 10(8):817–827CrossRefGoogle Scholar
  48. 48.
    Serikawa S, Lu H (2014) Underwater image dehazing using joint trilateral filter. Comput Electr Eng 40(1):41–50CrossRefGoogle Scholar
  49. 49.
    Sheng H, Zhang S, Cao X, Fang Y, Xiong Z (2017) Geometric occlusion analysis in depth estimation using integral guided filter for light-field image. IEEE Trans Image Process 26(12):5758–5771MathSciNetCrossRefGoogle Scholar
  50. 50.
    Singh D, Kumar V (2017) Dehazing of remote sensing images using fourth-order partial differential equations based trilateral filter. IET Computer VisionGoogle Scholar
  51. 51.
    Singh D, Kumar V (2018) Defogging of road images using gain coefficient-based trilateral filter. J Electron Imaging 27(1):013004CrossRefGoogle Scholar
  52. 52.
    Singh D, Kumar V (2017) Dehazing of remote sensing images using improved restoration model based dark channel prior. Imaging Sci J 65(5):282–292CrossRefGoogle Scholar
  53. 53.
    Singh D, Kumar V (2017) Comprehensive survey on haze removal techniques. Multimed Tools Appl.  https://doi.org/10.1007/s11042-017-5321-6
  54. 54.
    Singh D, Kumar V (2017) Modified gain intervention filter based dehazing technique. J Mod Opt 64(20):2165–2178CrossRefGoogle Scholar
  55. 55.
    Singh D, Garg D, Singh Pannu H (2017) Efficient landsat image fusion using fuzzy and stationary discrete wavelet transform. Imaging Sci J 65(2):108–114CrossRefGoogle Scholar
  56. 56.
    Soumya T, Thampi SM (2016) Recolorizing dark regions to enhance night surveillance video. Multimedia Tools and Applications 76(22):1–17Google Scholar
  57. 57.
    Tarel JP, Hautiere N (2009) Fast visibility restoration from a single color or gray level image. In: 2009 IEEE 12th International Conference on Computer Vision. IEEE, pp 2201–2208Google Scholar
  58. 58.
    Tripathi AK, Mukhopadhyay S (2012) Removal of fog from images: A review. IETE Techn Rev 29(2):148–156CrossRefGoogle Scholar
  59. 59.
    Wang D, Zhu J (2015) Fast smoothing technique with edge preservation for single image dehazing. IET Comput Vis 9(6):950–959CrossRefGoogle Scholar
  60. 60.
    Wang JB, He N, Zhang LL, Lu K (2015) Single image dehazing with a physical model and dark channel prior. Neurocomputing 149:718–728CrossRefGoogle Scholar
  61. 61.
    Wang L, Xiao L, Liu H, Wei Z (2015) Local brightness adaptive image colour enhancement with wasserstein distance. IET Image Process 9(1):43–53CrossRefGoogle Scholar
  62. 62.
    Wang W, Hua M (2013) Extracting dominant textures in real time with multi-scale hue-saturation-intensity histograms. IEEE Trans Image Process 22(11):4237–4248MathSciNetCrossRefzbMATHGoogle Scholar
  63. 63.
    Wang W, Yuan X (2017) Recent advances in image dehazing. IEEE/CAA J Autom Sin 4(3):410–436.  https://doi.org/10.1109/JAS.2017.7510532 MathSciNetCrossRefGoogle Scholar
  64. 64.
    Wang W, Yuan X, Wu X, Liu Y (2017) Fast image dehazing method based on linear transformation. IEEE Trans Multimed 19(6):1142–1155CrossRefGoogle Scholar
  65. 65.
    Wang Z, Feng Y (2014) Fast single haze image enhancement. Comput Electr Eng 40(3):785–795CrossRefGoogle Scholar
  66. 66.
    Wang Z, Hardeberg JY (2012) Development of an adaptive bilateral filter for evaluating color image difference. J Electron Imaging 21(2):023,021–1CrossRefGoogle Scholar
  67. 67.
    Xiang R, Zhu X, Wu F, Jiang X, Xu Q (2017) Guided filter based on multikernel fusion. Journal of Electronic Imaging 26(3):33027CrossRefGoogle Scholar
  68. 68.
    Xie B, Guo F, Cai Z (2010) Improved single image dehazing using dark channel prior and multi-scale retinex. In: 2010 International Conference on Intelligent System Design and Engineering Application (ISDEA). IEEE, vol 1, pp 848–851Google Scholar
  69. 69.
    Xu H, Guo J, Liu Q, Ye L (2012) Fast image dehazing using improved dark channel prior. In: 2012 IEEE International Conference on Information Science and Technology. IEEE, pp 663–667Google Scholar
  70. 70.
    Xu Y, Wen J, Fei L, Zhang Z (2016) Review of video and image defogging algorithms and related studies on image restoration and enhancement. IEEE Access 4:165–188CrossRefGoogle Scholar
  71. 71.
    Yang HY, Chen PY, Huang CC, Zhuang YZ, Shiau YH (2011) Low complexity underwater image enhancement based on dark channel prior. In: 2011 Second International Conference on Innovations in Bio-inspired Computing and Applications (IBICA). IEEE, pp 17–20Google Scholar
  72. 72.
    Yoon SM (2016) Visibility enhancement of fog-degraded image using adaptive total variation minimisation. The Imaging Sci J 64(2):82–86CrossRefGoogle Scholar
  73. 73.
    Zhang L, Shen P, Peng X, Zhu G, Song J, Wei W, Song H (2016) Simultaneous enhancement and noise reduction of a single low-light image. IET Image Process 10(11):840–847CrossRefGoogle Scholar
  74. 74.
    Zhang W, Hou X (2017) Light source point cluster selection-based atmospheric light estimation. Multimedia Tools and Applications 77(3):1–12MathSciNetGoogle Scholar
  75. 75.
    Zheng L, Shi H, Gu M (1740) Infrared traffic image enhancement algorithm based on dark channel prior and gamma correction. Mod Phys Lett B 31(19-21):044Google Scholar
  76. 76.
    Zhu Q, Mai J, Shao L (2015) A fast single image haze removal algorithm using color attenuation prior. IEEE Trans Image Process 24(11):3522–3533MathSciNetCrossRefGoogle Scholar
  77. 77.
    Zhu X, Xiang R, Wu F, Jiang X (1740) Single image haze removal based on fusion darkness channel prior. Mod Phys Lett B 31(19-21):037Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations