Skip to main content
Log in

A new encoding scheme of LBP based on maximum run length of state “1” for texture classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As a simple and efficient local feature descriptor, local binary pattern (LBP) is mainly made up of two steps: extraction step and encoding step. In the extraction step, a local region is denoted by a difference vector between the center pixel and its neighbors. In the encoding step, the corresponding binary bit-string of the difference vector is encoded for the following texture classification. Though encoding step plays a vital role in the whole process of LBP, two current widely used encoding schemes of LBPriu2 and LBC still have some limitations. Different from these two current encoding schemes, in this paper, we propose a new LBP encoding scheme based on the maximum run length of state “1” (LBPmr1) in a binary bit-string. The maximum run length of state “1” reflects the most important part of the binary bit-string structure and it is used as the LBP code of a binary bit-string for the first time. Experimental results on four representative texture databases of Outex, UIUC, CUReT and UMD show that the proposed LBPmr1 achieves better classification accuracy compared with other related LBP encoding schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359

    Article  Google Scholar 

  2. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst 43(4):996–1002

    Article  Google Scholar 

  3. Dana KJ, Ginneken BV, Nayar SK, Koenderink JJ (1997) Reflectance and texture and of real. 2013. IEEE Conf Comput Vis Pattern Recognit 18:151

    Article  Google Scholar 

  4. Jiang J, Chen C, Ma J, Wang Z, Wang Z, Hu R (2017) SRLSP: A face image super-resolution algorithm using smooth regression with local structure prior. IEEE Trans Multimed 19(1):27–40

    Article  Google Scholar 

  5. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  6. Li J, Li X, Yang B, Sun X (2017) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Google Scholar 

  7. Liao S, Law MWK, Chung ACS (2009) Dominant local binary patterns for texture classification. IEEE Trans Image Process 18(5):1107–1118

    Article  MathSciNet  Google Scholar 

  8. Liu L et al (2014) BRINT: binary rotation invariant and noise tolerant texture classification. IEEE Trans Image Process 23(7):3071–3084

    Article  MathSciNet  Google Scholar 

  9. Liu L, Wiliem A, Chen S, Lovell BC (2014) Automatic image attribute selection for zero-shot learning of object categories. In: International Conference on Pattern Recognition (ICPR), Stockholm, Sweden, pp 2619–2624

  10. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2Activity: recognizing complex activities from sensor data. In: Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI), Buenos Aires, Argentina, pp 1617–1623

  11. Liu Y, Nie L, Liu L, Rosenblum DS (2016a) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  12. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016b) Recognizing complex activities by a probabilistic interval-based model. In: AAAI Conference on Artificial Intelligence, North America, pp 1266–1272

  13. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016c) Urban water quality prediction based on multi-task multi-view learning. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence (IJCAI), New York, UK, pp 19–25

  14. Liu L, Wiliem A, Chen S, Lovell BC (2016d) What is the best way for extracting meaningful attributes from pictures? Pattern Recogn 64(C):314–326

    Google Scholar 

  15. Liu L, Nie F, Zhang T, Wiliem A, Lovell BC (2017) Unsupervised automatic attribute discovery method via multi-graph clustering. In: International Conference on Pattern Recognition (ICPR), Cancún, México, pp 1713–1718

  16. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  17. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76(8):10701–10719

    Article  Google Scholar 

  18. Lu T, Xiong Z, Zhang Y, Wang B, Lu T (2017) Robust face super-resolution via locality-constrained low-rank representation. IEEE Access 5:13103–13117

    Article  Google Scholar 

  19. Ludwig O, Delgado D, Goncalves V, Nunes U (2009) Trainable classifier-fusion schemes: an application to pedestrian detection. In: International IEEE Conference on Intelligent Transportation Systems, St. Louis, MO, USA, pp 1–6

  20. Ma J, Zhao J, Guo H, Jiang J, Zhou H, Gao Y (2017) Locality preserving matching. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp 4492–4498. https://doi.org/10.24963/ijcai.2017/627

  21. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  Google Scholar 

  22. Ojala T, Maenpaa T, Pietikainen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proceedings. 16th International Conference on Pattern Recognition, 2002, Quebec, Canada, vol 1, pp 701–706

  23. Pan Z, Fan H, Zhang L (2015) Texture Classification Using Local Pattern Based on Vector Quantization. IEEE Trans Image Process 24:5379–5388

    Article  MathSciNet  Google Scholar 

  24. Pan Z, Wu X, Li Z, Zhou Z (2017) Local adaptive binary patterns using diamond sampling structure for texture classification. IEEE Sign Process Lett 24(6):828–832

    Article  Google Scholar 

  25. Pan Z, Li Z, Fan H, Wu X (2017) Feature based local binary pattern for rotation invariant texture classification. Expert Syst Appl 88:238–248

    Article  Google Scholar 

  26. Rani PI, Muneeswaran K (2017) Recognize the facial emotion in video sequences using eye and mouth temporal Gabor features. Multimed Tools Appl 76(7):1–24

    Article  Google Scholar 

  27. Ren J, Jiang X, Yuan J (2013) Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Trans Image Process 22(10):4049–4060

    Article  MathSciNet  Google Scholar 

  28. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  29. Wang K et al (2013) Pixel to Patch Sampling Structure and Local Neighboring Intensity Relationship Patterns for Texture Classification. IEEE Signal Process Lett 20(9):853–856

    Article  Google Scholar 

  30. Yang Z, De-Shuang H, Wei J (2012) Completed Local Binary Count for Rotation Invariant Texture Classification. IEEE Trans Image Process 21:4492–4497

    Article  MathSciNet  Google Scholar 

  31. Xu Y, Yang X, Ling H, Ji H (2010) A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In: Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, pp 161–168

  32. Yuan C, Sun X, Lv R (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65

    Article  Google Scholar 

  33. Zhang T, Liu L, Wiliem A, Lovell B (2016). Is Alice chasing or being chased?: determining subject and object of activities in videos. In: IEEE Winter Conference on Applications of Computer Vision (WACV), Lake Placid, NY, USA, pp 1–7

  34. Zhenhua G, Zhang D, Zhang D (2010) A Completed Modeling of Local Binary Pattern Operator for Texture Classification. IEEE Trans Image Process 19:1657–1663

    Article  MathSciNet  Google Scholar 

  35. Zhou Z, Wang Y, Wu QMJ, Yang CN, Sun X (2016) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensics Secur 12(1):48–63

    Article  Google Scholar 

  36. Zhou Z, Yang CN, Chen B, Sun X, Liu Q, Wu QMJ (2016) Effective and efficient image copy detection with resistance to arbitrary rotation. IEICE Trans Inf Syst E99.D(6):1531–1540

    Article  Google Scholar 

  37. Zhou Z, Wu QMJ, Huang F, Sun X (2017) Fast and accurate near-duplicate image elimination for visual sensor networks. Int J Distrib Sens Netw 13(2). https://doi.org/10.1177/1550147717694172

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the Industrial Program of Zhejiang Province (Grant No. Grant No. 2016C31090), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Open Research Fund of Key Laboratory of Spectral Imaging Technology, Chinese Academy of Sciences (Grant No. LSIT201606D) and the Key Science and Technology Program of Shaanxi Province (Grant No. 2016GY-097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibin Pan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Z., Li, Z. & Wu, X. A new encoding scheme of LBP based on maximum run length of state “1” for texture classification. Multimed Tools Appl 77, 26469–26484 (2018). https://doi.org/10.1007/s11042-018-5871-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5871-2

Keywords

Navigation