Multimedia Tools and Applications

, Volume 78, Issue 3, pp 2765–2788 | Cite as

CoMo: a scale and rotation invariant compact composite moment-based descriptor for image retrieval

  • S. A. Vassou
  • N. Anagnostopoulos
  • K. Christodoulou
  • A. Amanatiadis
  • S. A. ChatzichristofisEmail author


Low level features play a significant role in image retrieval. Image moments can effectively represent global information of image content while being invariant under translation, rotation, and scaling. This paper presents CoMo: a moment based composite and compact low-level descriptor that can be used effectively for image retrieval and robot vision tasks. The proposed descriptor is evaluated by employing the Bag-of-Visual-Words representation over various well-known benchmarking image databases. The findings from the experimental evaluation provide strong evidence of high and competitive retrieval performance against various state-of-the-art local descriptors.


Content based image retrieval Low level features Compact composite descriptors 


  1. 1.
    Aslan S, Akgül CB, Sankur B, Tunali ET (2017) Exploring visual dictionaries: a model driven perspective. J Vis Commun Image Represent 49:315–331. CrossRefGoogle Scholar
  2. 2.
    Bay H, Tuytelaars T, Van Gool L (2006) Surf: speeded up robust features. In: Computer vision–ECCV 2006. Springer, pp 404–417Google Scholar
  3. 3.
    Babenko A, Slesarev A, Chigorin A, Lempitsky VS (2014) Neural codes for image retrieval. In: Computer Vision - ECCV 2014 - 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part I, pp 584–599, dblp computer science bibliography,
  4. 4.
    Bosch A, Zisserman A, Munoz X (2007) Representing shape with a spatial pyramid kernel. In: Proceedings of the 6th ACM International Conference on Image and Video Retrieval, CIVR 2007, Amsterdam, The Netherlands, July 9-11, 2007, pp 401–408, dblp computer science bibliography,
  5. 5.
    Chatzichristofis S, Boutalis Y (2008) Cedd: color and edge directivity descriptor: a compact descriptor for image indexing and retrieval. Comput Vis Syst 5008:312–322CrossRefGoogle Scholar
  6. 6.
    Chatzichristofis SA, Zagoris K, Boutalis YS, Papamarkos N (2010) Accurate image retrieval based on compact composite descriptors and relevance feedback information. Int J Pattern Recogn Artif Intell (IJPRAI) 2:207–244CrossRefGoogle Scholar
  7. 7.
    Chatzichristofis SA, Iakovidou C, Boutalis YS, Oge M (2013) color visual words based on non-predefined size codebooks. IEEE Trans Cybern 43(1):192–205CrossRefGoogle Scholar
  8. 8.
    Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Workshop on statistical learning in computer vision, ECCV, vol 1Google Scholar
  9. 9.
    Deselaers T, Keysers D, Ney H (2008) Features for image retrieval: an experimental comparison. Inf Retr 11(2):77–107CrossRefGoogle Scholar
  10. 10.
    Eisa M, Eletrebi A, Elhenawy E (2013) Enhancing the retrieval performance by combing the texture and edge features. CoRR, arXiv:abs/1301.2542
  11. 11.
    Fond A, Berger M-O, Simon G (2017) Facade proposals for urban augmented reality. In: 16th IEEE International symposium on mixed and augmented reality (ISMAR)Google Scholar
  12. 12.
    Gholipour F, Ebrahimnezhad H (2014) An efficient content based image retrieval using edge orientation co-occurrence matrix. In: 2014 6th Conference on information and knowledge technology (IKT). IEEE, pp 67–72Google Scholar
  13. 13.
    Gordo A, Almazȧn J, Revaud J, Larlus D (2016) Deep image retrieval: learning global representations for image search. In: Computer Vision - ECCV 2016 - 14th European conference. Amsterdam, The Netherlands, October 11-14, 2016, Proceedings Part VI, pp 241–257Google Scholar
  14. 14.
    Harris CG, Pike JM (1988) 3d positional integration from image sequences. Image Vis Comput 6(2):87–90CrossRefGoogle Scholar
  15. 15.
    Huang J, Kumar SR, Mitra M, Zhu WJ (2001) Image indexing using color correlograms. US Patent 6,246,790 12:1–16Google Scholar
  16. 16.
    Iakovidou C, Anagnostopoulos N, Kapoutsis A, Boutalis Y, Lux M, Chatzichristofis SA (2015) Localizing global descriptors for content-based image retrieval. EURASIP J Adv Signal Process 2015(1):80CrossRefGoogle Scholar
  17. 17.
    Jain M, Jégou H, Gros P (2011) Asymmetric hamming embedding: taking the best of our bits for large scale image search. In: ACM Multimedia. ACM Multimedia, Nov 28 - Dec 1, Scottsdale, Arizona, USA. ACM, Scottsdale, pp 1441–1444Google Scholar
  18. 18.
    Jegou H, Douze M, Schmid C (2008) Hamming embedding and weak geometric consistency for large scale image search. In: Computer Vision - ECCV 2008, 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008, Proceedings, Part I, pp 304–317,, dblp computer science bibliography,
  19. 19.
    Jégou H, Douze M, Schmid C (2010) Improving bag-of-features for large scale image search. Int J Comput Vis 87(3):316–336CrossRefGoogle Scholar
  20. 20.
    Jėgou H, Perronnin F, Douze M, Sȧnchez J, Pėrez P, Schmid C (2012) Aggregating local image descriptors into compact codes. IEEE Trans Pattern Anal Mach Intell 34(9):1704–1716CrossRefGoogle Scholar
  21. 21.
    Jianxin Wu, Rehg JM (2011) Centrist: a visual descriptor for scene categorization. IEEE Trans Pattern Anal Mach Intell 33(8):1489–1501CrossRefGoogle Scholar
  22. 22.
    Karakasis EG, Amanatiadis A, Gasteratos A, Chatzichristofis SA (2015) Image moment invariants as local features for content based image retrieval using the bag-of-visual-words model. Pattern Recogn Lett 55(0):22–27CrossRefGoogle Scholar
  23. 23.
    Kim NW, Kim TY, Choi J-S (2005) Edge-based spatial descriptor for content-based image retrieval. In: Image and Video Retrieval, 4th International Conference, CIVR 2005, Singapore, July 20-22, 2005, Proceedings, pp 454–464, dblp computer science bibliography,
  24. 24.
    Le D, Liang Y, Kong G, Zhang Q, Cao X, Izquierdo E (2016) Holons visual representation for image retrieval. IEEE Trans Multimed 18(4):714–725CrossRefGoogle Scholar
  25. 25.
    Lei Z, Fuzong L, Bo Z (1999) A cbir method based on color-spatial feature. In: TENCON 99. Proceedings of the IEEE Region 10 conference, vol 1. IEEE, Cheju Island, South Korea, South Korea. pp 166–169Google Scholar
  26. 26.
    Leutenegger S, Chli M, Siegwart RY (2011) Brisk: binary robust invariant scalable keypoints. In 2011 IEEE International conference on computer vision (ICCV). IEEE, Barcelona, Spain. pp 2548– 2555Google Scholar
  27. 27.
    Li X, Larson M, Hanjalic A (2015) Pairwise geometric matching for large-scale object retrieval. In: IEEE Conference on computer vision and pattern recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015, pp 5153–5161Google Scholar
  28. 28.
    Li C, Huang Y, Zhu L (2017) Color texture image retrieval based on gaussian copula models of gabor wavelets. Pattern Recogn 64:118–129CrossRefGoogle Scholar
  29. 29.
    Lowe DG (1999) Object recognition from local scale-invariant features. In: The proceedings of the seventh IEEE international conference on computer vision, 1999, vol 2. IEEE, Kerkyra, Greece, Greece. pp 1150–1157Google Scholar
  30. 30.
    Lux M, Chatzichristofis SA (2008) Lire: lucene image retrieval: an extensible java CBIR library. In: Proceedings of the 16th International Conference on Multimedia 2008, Vancouver, British Columbia, Canada, October 26-31, 2008, pp 1085–1088, dblp computer science bibliography,
  31. 31.
    Lux M, Anagnostopoulos N, Iakovidou C (2016) Spatial pyramids for boosting global features in content based image retrieval. In: 14th International Workshop on Content-Based Multimedia Indexing, CBMI 2016, Bucharest, Romania, June 15-17, 2016. IEEE, pp 1–4, dblp computer science bibliography,
  32. 32.
    Manjunath BS, Ohm JR, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circ Syst Video Technol 11(6):703–715CrossRefGoogle Scholar
  33. 33.
    Mei T, Rui Y, Li S, Qi T (2014) Multimedia search reranking: a literature survey. ACM Comput Surv (CSUR) 46(3):38CrossRefGoogle Scholar
  34. 34.
    Mikulík A, Perdoch M, Chum O, Matas J (2010) Learning a fine vocabulary. In: Computer vision - ECCV 2010, 11th European conference on computer vision, Heraklion, Crete, Greece, September 5-11, 2010. Proceedings, Part III, pp 1–14Google Scholar
  35. 35.
    Ng JY-H, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 53–61Google Scholar
  36. 36.
    Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. In: Proc. CVPR, vol 5. CiteseerGoogle Scholar
  37. 37.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  38. 38.
    Papakostas GA, Koulouriotis DE, Karakasis EG (2009) A unified methodology for the efficient computation of discrete orthogonal image moments. Inf Sci 179(20):3619–3633MathSciNetCrossRefGoogle Scholar
  39. 39.
    Papakostas GA, Koulouriotis DE, Karakasis E, Tourassis VD (2013) Moment-based local binary patterns: a novel descriptor for invariant pattern recognition applications. Neurocomputing 99:358– 371CrossRefGoogle Scholar
  40. 40.
    Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 91–99Google Scholar
  41. 41.
    Perronnin F, Liu Y, Sȧnchez J, Poirier H (2010) Large-scale image retrieval with compressed fisher vectors. In: The Twenty-Third IEEE conference on computer vision and pattern recognition, CVPR 2010, San Francisco, CA, USA, 13-18 June 2010, pp 3384–3391Google Scholar
  42. 42.
    Perronnin F, Sánchez J, Mensink T (2010) Improving the fisher kernel for large-scale image classification. In: Computer Vision - ECCV 2010, 11th European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, Part IV, pp 143–156,, dblp computer science bibliography,
  43. 43.
    Petscharnig S, Lux M, Chatzichristofis S (2017) Dimensionality reduction for image features using deep learning and autoencoders. In: Proceedings of the 15th international workshop on content-based multimedia indexing CBMI ’17, pp 23:1–23:6Google Scholar
  44. 44.
    Philbin J, Chum O, Isard M, Sivic J, Zisserman A (2008) Lost in quantization: improving particular object retrieval in large scale image databases. In: IEEE Conference on computer vision and pattern recognition, 2008. CVPR 2008. IEEE, pp 1–8Google Scholar
  45. 45.
    Qi G-J, Hua X-S, Rui Y, Mei T, Tang J, Zhang H-J (2007) Concurrent multiple instance learning for image categorization. In: 2007 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2007), 18-23 June 2007, Minneapolis, Minnesota, USA, dblp computer science bibliography,
  46. 46.
    Razavian AS, Azizpour H, Sullivan J, Stefan C (2014) CNN features off-the-shelf: an astounding baseline for recognition. In: IEEE Conference on computer vision and pattern recognition, CVPR Workshops 2014, Columbus, OH, USA, June 23-28, 2014, pp 512–519Google Scholar
  47. 47.
    Reta C, Solis-Moreno I, Cantoral-Ceballos JA, Alvarez-Vargas R, Townend P (2017) Improving content-based image retrieval for heterogeneous datasets using histogram-based descriptors. Multimedia Tools and Applications, ISSN: 1573-7721
  48. 48.
    Rosten E, Drummond T (2006) Machine learning for high-speed corner detection. In: ECCV (1), pp 430–443Google Scholar
  49. 49.
    Rublee E, Rabaud V, Konolige K, Bradski GR (2011) Orb: an efficient alternative to sift or surf. In: ICCV, 6-13 November, Barcelona, Spain. IEEE, Barcelona, pp 2564–2571Google Scholar
  50. 50.
    Sajjad M, Ullah A, Ahmad J, Abbas N, Rho S, Baik SW (2018) Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimed Tools Appl 77(4):4769–4789., dblp computer science bibliography, CrossRefGoogle Scholar
  51. 51.
    Schaefer G, Stich M (2004) Ucid: an uncompressed color image database. Storage Retriev Methods Appl Multimed 5307:472–480Google Scholar
  52. 52.
    Shao H, Svoboda T, Van Gool L (2003) Zubud-zurich buildings database for image based recognition. Computer Vision Lab, Swiss Federal Institute of Technology, Switzerland, Tech. Rep. 260:20Google Scholar
  53. 53.
    Shi J, Tomasi C (1994) Good features to track. In: Conference on Computer Vision and Pattern Recognition, CVPR 1994, 21-23 June, 1994, Seattle, WA, USA, pp 593–600, dblp computer science bibliography,
  54. 54.
    Shyu C-R, Brodley CE, Kak AC, Kosaka A, Aisen A, Broderick L (1998) Local versus global features for content-based image retrieval. In: IEEE Workshop on content-based access of image and video libraries proceedings. IEEE, Santa Barbara, USA. pp 30–34Google Scholar
  55. 55.
    Tolias G, Hervė J (2014) Visual query expansion with or without geometry: refining local descriptors by feature aggregation. Pattern Recogn 47(10):3466–3476CrossRefGoogle Scholar
  56. 56.
    Tolias G, Avrithis YS, Jėgou H (2013) To aggregate or not to aggregate: selective match kernels for image search. In: IEEE International conference on computer vision, , ICCV 2013, Sydney, Australia, December 1-8, 2013 pp 1401–1408Google Scholar
  57. 57.
    Tolias G, Avrithis YS, Hervė J (2016) Image search with selective match kernels: aggregation across single and multiple images. Int J Comput Vis 116(3):247–261MathSciNetCrossRefGoogle Scholar
  58. 58.
    Vassou SA, Anagnostopoulos N, Amanatiadis A, Christodoulou K, Chatzichristofis SA (2017) Como: a compact composite moment-based descriptor for image retrieval. In: Proceedings of the 15th international workshop on content-based multimedia indexing, CBMI 2017, Florence, Italy, June 19-21, 2017. pp. 30:1–30:5Google Scholar
  59. 59.
    Wang X, Yang M, Cour T, Zhu S, Yu K, Han TX (2011) Contextual weighting for vocabulary tree based image retrieval. In: IEEE International conference on computer vision, ICCV 2011, Barcelona, Spain, November 6-13, 2011. pp 209–216Google Scholar
  60. 60.
    Won CS, Park DK, Park SJ (2002) Efficient use of mpeg-7 edge histogram descriptor. Etri J 24(1):23–30CrossRefGoogle Scholar
  61. 61.
    Zhang S, Yang M, Wang X, Lin Y, Qi T (2013) Semantic-aware co-indexing for image retrieval. In: Proceedings of the IEEE international conference on computer vision, pp 1673– 1680Google Scholar
  62. 62.
    Zhang S, Yang M, Wang X, Lin Y, Tian Q (2015) Semantic-aware co-indexing for image retrieval. IEEE Trans Pattern Anal Mach Intell 37(12):2573–2587CrossRefGoogle Scholar
  63. 63.
    Zheng L, Wang S, Qi T (2014) Coupled binary embedding for large-scale image retrieval. IEEE Trans Image Process 23(8):3368–3380MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cyprus University of TechnologyLimassolCyprus
  2. 2.MicrosoftPragueCzech Republic
  3. 3.Department of Information SciencesNeapolis University PafosPafosCyprus
  4. 4.Democritus University of ThraceXanthiGreece

Personalised recommendations