Skip to main content
Log in

An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose an efficient and self-adapting colour-image encryption algorithm based on chaos and the interactions among multiple red, green and blue (RGB) layers. Our study uses two chaotic systems and the interactions among the multiple layers to strengthen the cryptosystem for the colour-image encryption, which can achieve better confusion and diffusion performances. In the confusion process, we use the novel Rubik’s Cube Scheme (RCS) to scramble the image. The significant advantage of this approach is that it sufficiently destroys the correlation among the different layers of colour image, which is the most important feature of the randomness for the encryption. The theoretical analysis and experimental results show that the proposed algorithm can improve the encoding efficiency, enhances the security of the cipher-text, has a large key space and high key sensitivity, and is also able to resist statistical and exhaustive attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abbas NA (2015) Image encryption based on Independent Component Analysis and Arnold’s Cat Map. Egypt Informatics J 17(1):139–146

    Article  Google Scholar 

  2. Abdullah AH, Enayatifar R, Lee M (2012) A hybrid genetic algorithm and chaotic function model for image encryption. AEU - Int J Electron Commun 66(10):806–816

    Article  Google Scholar 

  3. Asari VK, Islam MN, Kong D, Shen X (2014) Multiple-image encryption based on optical wavelet transform and multichannel fractional Fourier transform. Opt Laser Technol 57:343–349

    Article  Google Scholar 

  4. Bao L, Zhou Y (2015) Image encryption: Generating visually meaningful encrypted images. Inf. Sci. (Ny). 324:197–207

    Article  MathSciNet  MATH  Google Scholar 

  5. Belazi A, Abd El-Latif AA, Belghith S (2016) A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process 128:155–170

    Article  Google Scholar 

  6. Blakley GR, Borosh I (1979) Rivest-Shamir-Adleman public key cryptosystems do not always conceal messages. Comput Math with Appl 5(3):169–178

    Article  MathSciNet  MATH  Google Scholar 

  7. Chai X, Chen Y, Broyde L (2015) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61

    Article  Google Scholar 

  8. Chen L, Zhao D (2005) Optical image encryption based on fractional wavelet transform. Opt Commun 254(4–6):361–367

    Article  Google Scholar 

  9. Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons and Fractals 21(3):749–761

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen J, Zhu Z, Fu C, Zhang L, Zhang Y (2015) An efficient image encryption scheme using lookup table-based confusion and diffusion. Nonlinear Dyn. 81(3):1151–1166

    Article  Google Scholar 

  11. Chen J, Zhu Z, Fu C, Zhang L, Yu H (2015) Analysis and improvement of a double-image encryption scheme using pixel scrambling technique in gyrator domains. Opt Lasers Eng 66:1–9

    Article  Google Scholar 

  12. El Assad S, Farajallah M (2015) A new chaos-based image encryption system. Signal Process Image Commun 41:1–14

    Google Scholar 

  13. Enayatifar R, Abdullah AH, Isnin IF (2014) Chaos-based image encryption using a hybrid genetic algorithm and a DNA sequence. Opt Lasers Eng 56:83–93

    Article  Google Scholar 

  14. Gu G, Ling J (2014) Optik A fast image encryption method by using chaotic 3D cat maps. Opt - Int J Light Electron Opt 125(17):4700–4705

    Article  Google Scholar 

  15. Guesmi R, Farah MAB, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3):1123–1136

    Article  MathSciNet  MATH  Google Scholar 

  16. Han F, Zhu C (2011) An Novel Chaotic Image Encryption Algorithm based on Tangent-Delay Ellipse Reflecting Cavity Map System. Procedia Eng 23:186–191

    Article  Google Scholar 

  17. Khade P, Narnaware M (2012) 3D Chaotic Functions for Image Encryption. IJCSI Int J Comput Sci Issues 9(3):323–328

    Google Scholar 

  18. Li C, Zhang L, Ou R, Wong K, Shu S (2012) Breaking a novel colour image encryption algorithm based on chaos. Nonlinear Dyn. 70(4):2383–2388

    Article  MathSciNet  Google Scholar 

  19. Lian S, Sun J, Wang Z (2005) A block cipher based on a suitable use of the chaotic standard map. Chaos, Solitons and Fractals 26(1):117–129

    Article  MATH  Google Scholar 

  20. Liao X, Lai S, Zhou Q (2010) A novel image encryption algorithm based on self-adaptive wave transmission. Signal Process 90(9):2714–2722

    Article  MATH  Google Scholar 

  21. Liu H, Liu Y (2014) Security assessment on block-Cat-map based permutation applied to image encryption scheme. Opt Laser Technol 56:313–316

    Article  Google Scholar 

  22. Luo Y, Du M, Liu J (2014) A symmetrical image encryption scheme in wavelet and time domain. Commun Nonlinear Sci Numer Simul 20(2):447–460

    Article  Google Scholar 

  23. Luo Y, Cao L, Qiu S, Lin H, Harkin J, Liu J (2016) A chaotic map-control-based and the plain image-related cryptosystem. Nonlinear Dyn. 83(4):2293–2310

    Article  MathSciNet  MATH  Google Scholar 

  24. Luo Y et al. (2017) A Chaos-based Self-adapting RGB Image Permutation Scheme, in 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, 320–325

  25. Murillo-Escobar MA, Cruz-Hernández C, Abundiz-Pérez F, López-Gutiérrez RM, Acosta-Del-Campo OR (2015) A RGB image encryption algorithm based on total plain image characteristics and chaos. Signal Process 109:119–131

    Article  Google Scholar 

  26. Pareek NK, Patidar V, Sud KK (2011) Colour Image Encryption Scheme Based on Permutation and Substitution Techniques. in 1st International Conference on Computer Science and Information Technology 131:413–427

    Google Scholar 

  27. Som S, Dutta S, Singha R, Kotal A, Palit S (2015) Confusion and diffusion of color images with multiple chaotic maps and chaos-based pseudorandom binary number generator. Nonlinear Dyn. 80(1–2):615–627

    Article  Google Scholar 

  28. Tong X (2013) Design of an image encryption scheme based on a multiple chaotic map. Commun Nonlinear Sci Numer Simul 18(7):1725–1733

    Article  MathSciNet  MATH  Google Scholar 

  29. Tong X, Liu Y, Zhang M, Xu H, Wang Z (2015) An Image Encryption Scheme Based on Hyperchaotic Rabinovich and Exponential Chaos Maps. Entropy 17(1):181–196

    Article  Google Scholar 

  30. Tong X, Zhang M, Wang Z, Ma J (2016) A joint color image encryption and compression scheme based on hyper-chaotic system. Nonlinear Dyn. 84(4):2333–2356

    Article  Google Scholar 

  31. Wang X, Jin C (2012) Image encryption using Game of Life permutation and PWLCM chaotic system. Opt Commun 285(4):412–417

    Article  Google Scholar 

  32. Wang X, Wang Q (2013) A novel image encryption algorithm based on dynamic S-boxes constructed by chaos. Nonlinear Dyn. 75(3):567–576

    Article  Google Scholar 

  33. Wang X, Zhang H (2015) A color image encryption with heterogeneous bit-permutation and correlated chaos. Opt Commun 342:51–60

    Article  Google Scholar 

  34. Wang X, Zhang H (2016) A novel image encryption algorithm based on genetic recombination and hyper-chaotic systems. Nonlinear Dyn 83(1–2):333–346

    Article  MathSciNet  Google Scholar 

  35. Wang K, Pei W, Zou L, Song A, He Z (2005) On the security of 3D Cat map based symmetric image encryption scheme. Phys Lett A 343(6):432–439

    Article  MATH  Google Scholar 

  36. Wang X, Teng L, Qin X (2012) A novel colour image encryption algorithm based on chaos. Signal Process 92(4):1101–1108

    Article  MathSciNet  Google Scholar 

  37. Wang X et al (2014) Analysis and improvement of a chaos-based symmetric image encryption scheme using a bit-level permutation. Commun Nonlinear Sci Numer Simul 77(3):36–50

    Google Scholar 

  38. Wang Y, Quan C, Tay CJ (2015) Optical color image encryption without information disclosure using phase-truncated Fresnel transform and a random amplitude mask. Opt Commun 344:147–155

    Article  Google Scholar 

  39. Wang X, Zhang Y, Bao X (2015) A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng 73:53–61

    Article  Google Scholar 

  40. Wang X, Liu L, Zhang Y (2015) A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng 66:10–18

    Article  Google Scholar 

  41. Wang L, Song H, Liu P (2016) A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt Lasers Eng 77:118–125

    Article  Google Scholar 

  42. Wang X, Liu C, Xu D, Liu C (2016) Image encryption scheme using chaos and simulated annealing algorithm. Nonlinear Dyn. 84(3):1417–1429

    Article  MathSciNet  Google Scholar 

  43. Wang X, Liu C, Zhang H (2016) An effective and fast image encryption algorithm based on Chaos and interweaving of ranks. Nonlinear Dyn. 84(3):1595–1607

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu J, Liao X, Yang B (2017) Color image encryption based on chaotic systems and elliptic curve ElGamal scheme. Signal Process 141:109–124

    Article  Google Scholar 

  45. Zhang Y, Xiao D (2014) An image encryption scheme based on rotation matrix bit-level permutation and block diffusion. Commun Nonlinear Sci Numer Simul 19(1):74–82

    Article  MATH  Google Scholar 

  46. Zhang W, Wong K, Yu H, Zhu Z (2012) An image encryption scheme using lightweight bit-level confusion and cascade cross circular diffusion. Opt Commun 285(9):2343–2354

    Article  Google Scholar 

  47. Zhang W, Yu H, Zhu Z (2015) Color image encryption based on paired interpermuting planes. Opt Commun 338:199–208

    Article  Google Scholar 

  48. Zhang W, Yu H, Zhao Y, Zhu Z (2016) Image encryption based on three-dimensional bit matrix permutation. Signal Process 118:36–50

    Article  Google Scholar 

  49. Zhang X, Fan X, Wang J, Zhao Z (2016) A chaos-based image encryption scheme using 2D rectangular transform and dependent substitution. Multimed Tools Appl 75(4):1745–1763

    Article  Google Scholar 

  50. Zhu Z, Zhang W, Wong K, Yu H (2011) A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf Sci (Ny) 181(6):1171–1186

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China under Grant 61661008, the Guangxi Natural Science Foundation under Grant 2017GXNSFAA198180, 2015GXNSFBA139256 and 2016GXNSFCA380017, the funding of Overseas 100 Talents Program of Guangxi Higher Education, the Research Project of Guangxi University of China under Grant KY2016YB059, Guangxi Key Lab of Multi-source Information Mining & Security under Grant MIMS15-07, the Doctoral Research Foundation of Guangxi Normal University, the grant from Guangxi Experiment Centre of Information Science, and the Innovation Project of Guangxi Graduate Education under Grant YCSZ2017055.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Zhou, R., Liu, J. et al. An efficient and self-adapting colour-image encryption algorithm based on chaos and interactions among multiple layers. Multimed Tools Appl 77, 26191–26217 (2018). https://doi.org/10.1007/s11042-018-5844-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5844-5

Keywords

Navigation