Multimedia Tools and Applications

, Volume 78, Issue 3, pp 2719–2746 | Cite as

Square texton histogram features for image retrieval

  • Ahmad Raza
  • Tabassam Nawaz
  • Hassan DawoodEmail author
  • Hussain Dawood


A new image feature descriptor for content-based image retrieval is proposed, named as Square Texton Histogram (STH). STH is derived based on the correlation between texture orientation and color information. Based on julesz’s texton theory ‘Square Texton’ templates are proposed for Image texture analysis. Texture Orientation is computed by using proposed multi texture orientation detector that incorporates horizontal, vertical and diagonal edges information. Features are extracted by correlating texture color and edge orientation by using 4-directional co-occurrence matrix while; the final set of features is obtained by histogram. To find similarity between query and target image, a weighted square-chord distance measure is proposed. The Proposed distance metric integrates the advantages of both bin-by-bin and weighted distance metrics. The proposed STH method is tested on standard dataset’s that are extensively used in CBIR domain, such as Coral5K and Coral10K. STH has good discrimination power of primary visual features.


Square texton histogram (STH) Image retrieval Content base image retrieval (CBIR) Weighted square-chord distance 


  1. 1.
    Agarwal S, Verma A, Singh P (2013) Content based image retrieval using discrete wavelet transform and edge histogram descriptor. In: 2103 I.E. International Conference on Information Systems and Computer Networks (ISCON). IEEE, Mathura, pp 19–23Google Scholar
  2. 2.
    Ahmad J, Sajjad M, Mehmood I, Baik SW (2015) SSH: Salient structures histogram for content based image retrieval. In: 2015 I.E. International Conference on Network-Based Information Systems (NBiS). IEEE, Taipei, pp 212–217Google Scholar
  3. 3.
    Ahmad J, Sajjad M, Rho S, Baik SW (2016) Multi-scale local structure patterns histogram for describing visual contents in social image retrieval systems. Multimedia Tools and Applications 75(20):12669–12692CrossRefGoogle Scholar
  4. 4.
    Alkhawlani M, Elmogy M, Elbakry H (2015) Content-based image retrieval using local features descriptors and bag-of-visual words. Int J Adv Comput Sci Appl 6(9):212–219Google Scholar
  5. 5.
    Alzu’bi A, Amira A, Ramzan N (2015) Semantic content-based image retrieval: A comprehensive study. J Vis Commun Image Represent 32:20–54CrossRefGoogle Scholar
  6. 6.
    Alzu'bi A, Amira A, Ramzan N (2017) Content-based image retrieval with compact deep convolutional features. Neurocomputing 249:95–105CrossRefGoogle Scholar
  7. 7.
    Amores J, Sebe N, Radeva P (2007) Context-based object-class recognition and retrieval by generalized correlograms. IEEE Trans Pattern Anal Mach Intell 29(10)Google Scholar
  8. 8.
    Babenko A (2015) Lempitsky V Aggregating local deep features for image retrieval. Proceedings of the IEEE international conference on computer vision, In, pp 1269–1277Google Scholar
  9. 9.
    Babenko A, Slesarev A, Chigorin A, Lempitsky V (2014) Neural codes for image retrieval. In: 2014 European conference on computer vision (ECCV). Springer, Heidelberg, pp 584–599Google Scholar
  10. 10.
    Banerjee P, Bhunia AK, Bhattacharyya A, Roy PP, Murala S (2017) Local neighborhood intensity pattern: a new texture feature descriptor for image retrieval. arXiv preprint arXiv:1709.02463Google Scholar
  11. 11.
    Bay H, Ess A, Tuytelaars T, Van Gool L (2008) Speeded-up robust features (SURF). Comput Vis Image Underst 110(3):346–359CrossRefGoogle Scholar
  12. 12.
    Carson C, Belongie S, Greenspan H, Malik J (2002) Blobworld: Image segmentation using expectation-maximization and its application to image querying. IEEE Trans Pattern Anal Mach Intell 24(8):1026–1038CrossRefGoogle Scholar
  13. 13.
    Chen Y, Wang JZ, Krovetz R (2003) An unsupervised learning approach to content-based image retrieval. In: 2003 International Symposium on Signal Processing and Its Applications, Vol.1. IEEE, Paris, pp 197–200Google Scholar
  14. 14.
    Cross GR, Jain AK (1983) Markov random field texture models. IEEE Trans Pattern Anal Mach Intell 1:25–39CrossRefGoogle Scholar
  15. 15.
    Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: Ideas, influences, and trends of the new age. ACM Computing Surveys (Csur) 40(2):5CrossRefGoogle Scholar
  16. 16.
    Dharani T, Aroquiaraj IL (2013) A survey on content based image retrieval. In: 2013 I.E. International Conference on Pattern Recognition, Informatics and Mobile Engineering (PRIME). IEEE, Salem, pp 485–490Google Scholar
  17. 17.
    Diplaros A, Gevers T, Patras I (2006) Combining color and shape information for illumination-viewpoint invariant object recognition. IEEE Trans Image Process 15(1):1–11CrossRefGoogle Scholar
  18. 18.
    Gebejes A, Huertas R (2013) Texture characterization based on grey-level co-occurrence matrix. In: 2013 Conference of Informatics and Management Sciences, pp 375–378Google Scholar
  19. 19.
    Gong Y, Wang L, Guo R, Lazebnik S (2014) Multi-scale orderless pooling of deep convolutional activation features. In: 2014 European conference on computer vision. Springer, Heidelberg, pp 392–407Google Scholar
  20. 20.
    Gordo A, Almazán J, Revaud J, Larlus D (2016) Deep image retrieval: Learning global representations for image search. In: 2016 European Conference on Computer Vision. Springer, Heidelberg, pp 241–257Google Scholar
  21. 21.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recogn 43(3):706–719CrossRefGoogle Scholar
  22. 22.
    Han J, Ma K-K (2007) Rotation-invariant and scale-invariant Gabor features for texture image retrieval. Image Vis Comput 25(9):1474–1481CrossRefGoogle Scholar
  23. 23.
    Huang J, Kumar SR, Mitra M, Zhu W-J, Zabih R (1997) Image indexing using color correlograms. In: 1997 I.E. Conference on Computer Vision and Pattern Recognition. IEEE, San Juan, pp 762–768Google Scholar
  24. 24.
    Huang Z-C, Chan PP, Ng WW, Yeung DS (2010) Content-based image retrieval using color moment and gabor texture feature. In: 2010 International Conference on Machine Learning and Cybernetics (ICMLC), Vol. 2. IEEE, Qingdao, pp 719–724Google Scholar
  25. 25.
    Iqbal K, Odetayo MO, James A (2012) Content-based image retrieval approach for biometric security using colour, texture and shape features controlled by fuzzy heuristics. J Comput Syst Sci 78(4):1258–1277MathSciNetCrossRefGoogle Scholar
  26. 26.
    Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008CrossRefGoogle Scholar
  27. 27.
    Jain AK, Vailaya A (1996) Image retrieval using color and shape. Pattern Recogn 29(8):1233–1244CrossRefGoogle Scholar
  28. 28.
    Jiang F, Hu H-M, Zheng J, Li B (2016) A hierarchal BoW for image retrieval by enhancing feature salience. Neurocomputing 175:146–154CrossRefGoogle Scholar
  29. 29.
    Julesz B (1984) A brief outline of the texton theory of human vision. Trends Neurosci 7(2):41–45CrossRefGoogle Scholar
  30. 30.
    Jyothi B, MadhaveeLatha Y, Mohan PK, Reddy V (2016) Steerable Texture Descriptor for an Effective Content-Based Medical Image Retrieval System Using PCA. In: 2016 International Conference on Computer and Communication Technologies. Springer, Heidelberg, pp 289–298Google Scholar
  31. 31.
    Kalantidis Y, Mellina C, Osindero S (2016) Cross-dimensional weighting for aggregated deep convolutional features. In: 2016 European Conference on Computer Vision. Springer, Heidelberg, pp 685–701Google Scholar
  32. 32.
    Kuhl FP, Giardina CR (1982) Elliptic Fourier features of a closed contour. Comput Graphics and Image Process 18(3):236–258CrossRefGoogle Scholar
  33. 33.
    Lin C-H, Huang D-C, Chan Y-K, Chen K-H, Chang Y-J (2011) Fast color-spatial feature based image retrieval methods. Expert Syst Appl 38(9):11412–11420CrossRefGoogle Scholar
  34. 34.
    Liu G-H, Yang J-Y (2008) Image retrieval based on the texton co-occurrence matrix. Pattern Recogn 41(12):3521–3527CrossRefGoogle Scholar
  35. 35.
    Liu G-H, Yang J-Y (2013) Content-based image retrieval using color difference histogram. Pattern Recogn 46(1):188–198CrossRefGoogle Scholar
  36. 36.
    Liu G-H, Zhang L, Hou Y-K, Li Z-Y, Yang J-Y (2010) Image retrieval based on multi-texton histogram. Pattern Recogn 43(7):2380–2389CrossRefGoogle Scholar
  37. 37.
    Liu G-H, Li Z-Y, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recogn 44(9):2123–2133CrossRefGoogle Scholar
  38. 38.
    Liu G-H, Yang J-Y, Li Z (2015) Content-based image retrieval using computational visual attention model. Pattern Recogn 48(8):2554–2566CrossRefGoogle Scholar
  39. 39.
    Liu Z, Wang S, Tian Q (2016) Fine-residual VLAD for image retrieval. Neurocomputing 173:1183–1191CrossRefGoogle Scholar
  40. 40.
    Liu P, Guo J-M, Chamnongthai K, Prasetyo H (2017) Fusion of color histogram and LBP-based features for texture image retrieval and classification. Inf Sci 390:95–111CrossRefGoogle Scholar
  41. 41.
    Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110MathSciNetCrossRefGoogle Scholar
  42. 42.
    Luo J, Crandall D (2006) Color object detection using spatial-color joint probability functions. IEEE Trans Image Process 15(6):1443–1453CrossRefGoogle Scholar
  43. 43.
    Mahmoudi F, Shanbehzadeh J, Eftekhari-Moghadam A-M, Soltanian-Zadeh H (2003) Image retrieval based on shape similarity by edge orientation autocorrelogram. Pattern Recogn 36(8):1725–1736CrossRefGoogle Scholar
  44. 44.
    Manjunath BS, Ohm J-R, Vasudevan VV, Yamada A (2001) Color and texture descriptors. IEEE Trans Circuits and Syst Video Technol 11(6):703–715CrossRefGoogle Scholar
  45. 45.
    Manjunath BS, Salembier P, Sikora T (2002) Introduction to MPEG-7: multimedia content description interface. John Wiley & Sons, New YorkGoogle Scholar
  46. 46.
    Mehta P, Saoji L, Dodrajka A, Chug T (2016) Detection of Diseases on leaves and its possible diagnosis Using CBIR technique. International Education and Research Journal 2(2)Google Scholar
  47. 47.
    Mei T, Rui Y, Li S, Tian Q (2014) Multimedia search reranking: A literature survey. ACM Computing Surveys (CSUR) 46(3):38CrossRefGoogle Scholar
  48. 48.
    Mezaris V, Kompatsiaris I, Strintzis MG (2003) An ontology approach to object-based image retrieval. In: 2003 I.E. International Conference on Image Processing, Vol. 2, IEEE, Barcelona, pp II-511Google Scholar
  49. 49.
    Nan B, Xu Y, Mu Z, Chen L (2015) Content-based image retrieval using local texture-based color histogram. In: 2015 I.E. International Conference on Cybernetics (CYBCONF). IEEE, Gdynia, pp 399–405Google Scholar
  50. 50.
    Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefGoogle Scholar
  51. 51.
    Palm C (2004) Color texture classification by integrative co-occurrence matrices. Pattern Recogn 37(5):965–976CrossRefGoogle Scholar
  52. 52.
    Perronnin F, Liu Y, Sánchez J, Poirier H (2010) Large-scale image retrieval with compressed fisher vectors. In: 2010 I.E. Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, San Francisco, pp 3384–3391Google Scholar
  53. 53.
    Qi GJ, Hua XS, Rui Y, Mei T, Tang J, Zhang HJ (2007) Concurrent multiple instance learning for image categorization. In: 2007 I.E. Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Minneapolis, pp 1–8Google Scholar
  54. 54.
    Qian X, Hua X-S, Chen P, Ke L (2011) PLBP: An effective local binary patterns texture descriptor with pyramid representation. Pattern Recogn 44(10):2502–2515CrossRefGoogle Scholar
  55. 55.
    Qian X, Zhao Y, Han J (2015) Image location estimation by salient region matching. IEEE Trans Image Process 24(11):4348–4358MathSciNetCrossRefGoogle Scholar
  56. 56.
    Qian X, Wang H, Zhao Y, Hou X, Hong R, Wang M, Tang YY (2017) Image location inference by multisaliency enhancement. IEEE Transactions on Multimedia 19(4):813–821CrossRefGoogle Scholar
  57. 57.
    Sajjad M, Ullah A, Ahmad J, Abbas N, Rho S, Baik S-W (2017) Integrating salient colors with rotational invariant texture features for image representation in retrieval systems. Multimedia Tools and Applications. 1–21.
  58. 58.
    Shrivastava N, Tyagi V (2014) Content based image retrieval based on relative locations of multiple regions of interest using selective regions matching. Inf Sci 259:212–224CrossRefGoogle Scholar
  59. 59.
    Singh C, Kaur KP (2016) A fast and efficient image retrieval system based on color and texture features. J Vis Commun Image Represent 41:225–238CrossRefGoogle Scholar
  60. 60.
    Srivastava P, Khare A (2017) Integration of wavelet transform, Local Binary Patterns and moments for content-based image retrieval. J Vis Commun Image Represent 42:78–103CrossRefGoogle Scholar
  61. 61.
    Talib A, Mahmuddin M, Husni H, George LE (2013) A weighted dominant color descriptor for content-based image retrieval. J Vis Commun Image Represent 24(3):345–360CrossRefGoogle Scholar
  62. 62.
    Tolias G, Sicre R, Jégou H (2015) Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:151105879Google Scholar
  63. 63.
    Tzelepi M, Tefas A (2018) Deep convolutional learning for Content Based Image Retrieval. Neurocomputing 275:2467–2478CrossRefGoogle Scholar
  64. 64.
    Uricchio T, Ballan L, Seidenari L, Del Bimbo A (2017) Automatic image annotation via label transfer in the semantic space. Pattern Recog 71:144–157Google Scholar
  65. 65.
    Velmurugan K (2014) A survey of content-based image retrieval systems using scale-invariant feature transform (sift). International Journal of Advanced Re-search in Computer Science and Software Engineering 4(2):604–608Google Scholar
  66. 66.
    Wang X, Wang Z (2013) A novel method for image retrieval based on structure elements’ descriptor. J Vis Commun Image Represent 24(1):63–74CrossRefGoogle Scholar
  67. 67.
    Wu J, Feng L, Liu S, Sun M (2017) Image retrieval framework based on texton uniform descriptor and modified manifold ranking. J Vis Commun Image Represent 49:78–88CrossRefGoogle Scholar
  68. 68.
    Yang X, Qian X, Xue Y (2015) Scalable mobile image retrieval by exploring contextual saliency. IEEE Trans Image Process 24(6):1709–1721MathSciNetCrossRefGoogle Scholar
  69. 69.
    Ng JYH, Yang F, Davis LS (2015) Exploiting local features from deep networks for image retrieval. arXiv preprint arXiv:1504.05133Google Scholar
  70. 70.
    Zeng S, Huang R, Wang H, Kang Z (2016) Image retrieval using spatiograms of colors quantized by Gaussian Mixture Models. Neurocomputing 171:673–684CrossRefGoogle Scholar
  71. 71.
    Zhang S, Tian Q, Hua G, Huang Q, Gao W (2011) Generating descriptive visual words and visual phrases for large-scale image applications. IEEE Trans Image Process 20(9):2664–2677MathSciNetCrossRefGoogle Scholar
  72. 72.
    Zhang S, Tian Q, Huang Q, Gao W, Rui Y (2013) Multi-order visual phrase for scalable image search. In: 2013 International Conference on Internet Multimedia Computing and Service. ACM, New York, pp 145–149Google Scholar
  73. 73.
    Zhao M, Zhang H, Sun J (2016) A novel image retrieval method based on multi-trend structure descriptor. J Vis Commun Image Represent 38:73–81CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ahmad Raza
    • 1
  • Tabassam Nawaz
    • 1
  • Hassan Dawood
    • 1
    Email author
  • Hussain Dawood
    • 2
  1. 1.Department of Software EngineeringUniversity of Engineering and TechnologyTaxilaPakistan
  2. 2.Faculty of Computing and Information TechnologyUniversity of JeddahJeddahSaudi Arabia

Personalised recommendations