Human gait recognition using GEI-based local multi-scale feature descriptors

  • Ait O. Lishani
  • Larbi Boubchir
  • Emad Khalifa
  • Ahmed Bouridane
Article
  • 22 Downloads

Abstract

Human gait recognition is a biometric technique for persons identification based on their walking manner. This paper proposes a novel gait recognition approach capable of selecting information characteristics for human identification under different conditions including normal walking, carrying a bag and wearing a clothing for different angles of view; thereby enhancing the recognition accomplishment. The proposed approach relies on two feature extraction methods based on multi-scale feature descriptors including Multi-scale Local Binary Pattern (MLBP) and Gabor filter bank, through Spectra Regression Kernel Discriminant Analysis (SRKDA) reduction algorithm. The proposed features are extracted locally from two Region of Interest (ROIs) representing the dynamic areas in the Gait Energy Image (GEI). The experiments conducted on CASIA and USF Gait databases have shown that the suggested methods achieve better recognition performances up to 92% in terms of identification rate at rank-1 than the existing similar and recent state-of-the-art methods.

Keywords

Biometrics Gait recognition Gait energy image Multi-scale local binary pattern Gabor filter bank Spectra regression kernel discriminant analysis 

References

  1. 1.
    Ahonen T, Hadid A, Pietikainen M (2009) Facial expression recognition based on local binary patterns: A comprehensive study. Image Vis Comput 27:803–816CrossRefGoogle Scholar
  2. 2.
    Bashir K, Xiang T, Gong S (2009) Gait representation using flow fields. British Machine Vision Association (BMVC)Google Scholar
  3. 3.
    Bashir K, Xiang T, Gong S (2010) Gait recognition without subject cooperation. Pattern Recogn Lett 31(13):2052–2060CrossRefGoogle Scholar
  4. 4.
    Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385–2404CrossRefGoogle Scholar
  5. 5.
    Ben Abdelkader C, Cutler R, Davis L (2002) Stride and cadence as a biometric in automatic person identification and verification. In: 5th IEEE International Conference on Automatic Face and Gesture Recognition, pp 372–377Google Scholar
  6. 6.
    Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Trans Image Process 16(2):731–740MathSciNetCrossRefGoogle Scholar
  7. 7.
    Boulgouris NV, Hatzinakos D, Plataniotis KN (2005) Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process Mag 22(6):78–90CrossRefGoogle Scholar
  8. 8.
    Bounneche MD, Boubchir L, Bouridane A, Nekhoul B, Ali-Chérif A (2016) Multi-spectral palmprint recognition based on oriented multiscale log-Gabor filters. Neurocomputing 205:274–286CrossRefGoogle Scholar
  9. 9.
    Cai D, He X, Han J (2007) Efficient kernel discriminant analysis via spectral regression. In: 7th IEEE International Conference on Data Mining (ICDM), pp 427–432Google Scholar
  10. 10.
    Cai D, He X, Han J (2011) Speed up kernel discriminant analysis. The Int J Very Large Data Bases 20(1):21–33CrossRefGoogle Scholar
  11. 11.
    CASIA Gait database. http://www.cbsr.ia.ac.cn
  12. 12.
    Dupuis Y, Savatier X, Vasseur P (2013) Feature subset selection applied to model-free gait recognition. Image Vis Comput 31(8):580–591CrossRefGoogle Scholar
  13. 13.
    Guan Y, Li C-T, Roli F (2015) On reducing the effect of covariate factors in gait recognition: a classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 37(7):1521–1528CrossRefGoogle Scholar
  14. 14.
    Han J, Bhanu B (2006) Individual recognition using gait energy image. IEEE Trans Pattern Anal Mach Intell 28(2):316–322CrossRefGoogle Scholar
  15. 15.
    Hu M, Wang Y, Zhang Z, Zhang D, Little JJ (2013) Incremental learning for video-based gait recognition with LBP fow. IEEE Trans Cybern 43(1):77–89CrossRefGoogle Scholar
  16. 16.
    Isaac ERHP, Elias S, Rajagopalan S, Easwarakumar KS (2017) View-invariant gait recognition through genetic template segmentation. IEEE Signal Process Lett 24 (8):1188–1192CrossRefGoogle Scholar
  17. 17.
    Jain AK, Flynn P, Ross AA (2007) Handbook of biometrics. Springer Ed., BerlinGoogle Scholar
  18. 18.
    Kusakunniran W, Wu Q, Li H, Zhang J (2009) Multiple views gait recognition using view transformation model based on optimized gait energy image. In: The 12th IEEE international conference on computer vision, pp 1058–1064Google Scholar
  19. 19.
    Kusakunniran W, Wu Q, Zhang J, Li H (2010) Support vector regression for multi-view gait recognition based on local motion feature selection. In: IEEE conference on computer vision and pattern recognition, pp 974–981Google Scholar
  20. 20.
    Lades M, Vorbruggen J, Buhmann J, Lange J, Von Der Malsburg C, Wurtz R, Konen W (1993) Distortion invariant object recognition in the dynamic link architecture. IEEE Trans Comput 42(3): 300–311CrossRefGoogle Scholar
  21. 21.
    Lancieri L, Boubchir L (2007) Using multiple uncertain examples and adaptative fuzzy reasoning to optimize image characterization. Knowl-Based Syst 20(3):266–276CrossRefGoogle Scholar
  22. 22.
    Lishani AO, Boubchir L, Bouridane A (2014) Haralick features for gei-based, human gait recognition. In: The 26th international conference on microelectronics (ICM), pp 36–39Google Scholar
  23. 23.
    Lishani AO, Boubchir L, Khalifa E, Bouridane A (2016) Gabor filter bank-based gei features for human gait recognition. In: The 39th international conference on telecommunications and signal processing (TSP), pp 648–651Google Scholar
  24. 24.
    Lishani AO, Boubchir L, Khalifa E, Bouridane A (2017) Gait recognition based on wavelet features with spectral regression kernel discriminant analysis. In: The 40th international conference on telecommunications and signal processing (TSP), pp 789–792Google Scholar
  25. 25.
    Lishani AO, Boubchir L, Khalifa E, Bouridane A (2017) Human gait recognition based on Haralick features. Signal Image Vid Process 11(6):1123–1130CrossRefGoogle Scholar
  26. 26.
    Little J, Boyd JE (1995) Describing motion for recognition. International Symposium on Computer VisionGoogle Scholar
  27. 27.
    Little J, Boyd JE (1998) Recognizing people by their Gait: the shape of motion. Videre: J Comput Vis Res 1(2):1–32Google Scholar
  28. 28.
    Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11 (4):467–476CrossRefGoogle Scholar
  29. 29.
    Lu H, Venetsanopoulos P (2006) A layered deformable model for gait analysis, pp 249–254Google Scholar
  30. 30.
    Mika S, Ratsch G, Weston J, Scholkopf B, Muller K (1999) Fisher discriminant analysis with kernels. In: IEEE neural networks for signal processing workshop, pp 41–48Google Scholar
  31. 31.
    Mohan Kumar HP, Nagendraswamy HS (2014) LBP for gait recognition: a symbolic approach based on GEI plus RBL of GEI. In: International conference on electronics and communication systems (ICECS), pp 1–5Google Scholar
  32. 32.
    Ng H, Tong H-L, Tan W-H, Yap TT, Chong P, Abdullah J (2011) Human identification based on extracted gait features. Int J New Comput Architectures Appl 1(2):358–370Google Scholar
  33. 33.
    Niyogi S, Adelson E (1994) Analyzing and recognizing walking figures in XYT. In: IEEE conference on computer vision and pattern recognition, pp 469–474Google Scholar
  34. 34.
    Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn Lett 29 (1):1299–1319Google Scholar
  35. 35.
    Pietikainen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local hinary patterns. Springer-Verlag, LondonCrossRefGoogle Scholar
  36. 36.
    Sarkar S, Phillips PJ, Liu Z, Vega IR, Grother P, Bowyer KW (2005) The HumanID Gait challenge problem: data sets, performance, and analysis. IEEE Trans Pattern Anal Mach Intell 27(2): 162–177CrossRefGoogle Scholar
  37. 37.
    Shan C, Gong S, McOwan P (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefGoogle Scholar
  38. 38.
    Tao D, Li X, Wu X, Maybank SJ (2007) General tensor discriminant analysis and gabor features for gait recognition. IEEE Trans Pattern Anal Mach Intell 29(10):1700–1715CrossRefGoogle Scholar
  39. 39.
    USF Human ID Gait database. http://figment.csee.usf.edu/GaitBaseline/
  40. 40.
    Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Trans Pattern Anal Mach Intell 25 (12):1505–1518CrossRefGoogle Scholar
  41. 41.
    Whytock T, Belyaev A, Robertson N (2014) Dynamic distance-based shape features for Gait recognition. J Math Imaging Vision 50(3):314–326CrossRefMATHGoogle Scholar
  42. 42.
    Yam C, Nixon M, Carter J (2004) Automated person recognition by walking and running via model-based approaches. Pattern Recogn 37(5):1057–1072CrossRefGoogle Scholar
  43. 43.
    Yu S, Tan D, Tan T (2006) Modelling the effect of view angle variation on appearance-based Gait recognition. In: Asian conference on computer vision. Springer-Verlag Berlin Heidelberg, pp 708–816Google Scholar
  44. 44.
    Zhang H, Liu Z (2009) Gait representation and recognition using haar wavelet and radon transform. In: Proc WASE international conference on information engineering, pp 83–86Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer and Information SciencesNorthumbria UniversityNewcastle-upon-TyneUK
  2. 2.LIASD Laboratory, Department of Computer ScienceUniversity of Paris 8Saint-Denis cedexFrance

Personalised recommendations