Skip to main content

Advertisement

Log in

A novel retrieval method for remote sensing image based on statistical model

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the increasing number of high-resolution remote sensing (HRRS) image technologies, there is an interest in seeking a way to retrieve images efficiently. In order to describe the images with abundant texture information more concisely and accurately, we propose a novel remote sensing image retrieval approach based on the statistical features of non-subsampled shearlet transform (NSST) coefficients, according to which we set up a model using Bessel K form (BKF). First, the remote sensing (RS) image is decomposed into several subbands of frequency and orientation using the non-subsampled shearlet transform. Then, we use the Bessel K distribution model is utilized to describe the coefficients of NSST high-frequency subband. Next, the BKF parameters are selected to serve as the texture feature to represent the characteristics of image, namely BKF statistical model feature (BSMF), and the feature vector of each image is created by combination with parameters at each high-pass subband. Both the experiment and theory indicate that the BKF distribution is highly matched with the statistical features of NSST coefficients within high-pass subbands. In our experiments, we applied the proposed method to two general RS image datasets- The UC Merced land use dataset and the Sydney dataset. The results show that our proposed method can achieve a more robust and commendable performance than the state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. AAkhaee MA, Sahraeian SME, Marvasti F (2010) Contourlet-based image watermarking using optimum detector in noisy environment. IEEE Trans Image Process 19(4):967–980

    Article  MathSciNet  MATH  Google Scholar 

  2. Allili MS (2012) Wavelet modeling using finite mixture of generalized Gaussian distributions: application to texture discrimination and retrieval. IEEE Trans Image Process 21(4):1452–1464

    Article  MathSciNet  MATH  Google Scholar 

  3. Ansari RA, Buddhiraju KM (2015) K-means based hybrid wavelet and curvelet transform approach for denoising of remotely sensed images. Remote Sens Lett 6(12):982–991

    Article  Google Scholar 

  4. Aptoula E (2014) Remote sensing image retrieval with global morphological texture descriptors. IEEE Trans Geosci Remote Sens 52(5):3023–3034

    Article  Google Scholar 

  5. Bao Q, Guo P. Comparative studies on similarity measures for remote sensing image retrieval. Proceedings of the IEEE International Conference on Systems, Man & Cybernetics, 2004, 1:1112–1116

  6. Buccigrossi RW, Simoncelli EP (1999) Image compression via joint statistical characterization in the wavelet domain. IEEE Trans Image Process 8(12):1688–1701

    Article  Google Scholar 

  7. Celebi ME, Kingravi HA, Vela PA (2013) A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst Appl 40(1):200–210

    Article  Google Scholar 

  8. Champion I, Germain C, Da Costa JP, Alborini A, Dubois-Fernandez P (2014) Retrieval of forest stand age from SAR image texture for varying distance and orientation values of the gray level co-occurrence matrix. IEEE Geosci Remote Sens Lett 11(1):5–9

    Article  Google Scholar 

  9. Chaudhuri B, Demir B, Bruzzone L, Chaudhuri S (2016) Region-based retrieval of remote sensing images using an unsupervised graph-theoretic approach. IEEE Geosci Remote Sens Lett 13(7):987–991

    Article  Google Scholar 

  10. Csurka G, Dance CR, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. Workshop on Statistical Learning in Computer Vision 44(247):1–22

    Google Scholar 

  11. Dong Y, Ma J (2012) Statistical contourlet subband characterization for texture image retrieval. Intelligent computing theories and applications. Springer, Berlin, pp 495–502

    Book  Google Scholar 

  12. Du B, Zhang L (2014) Target detection based on a dynamic subspace. Pattern Recogn 47(1):344–358

    Article  Google Scholar 

  13. Du Z, Li X, Lu X (2016) Local structure learning in high resolution remote sensing image retrieval. Neurocomputing 207:813–822

    Article  Google Scholar 

  14. Faloutsos C, Barber R, Flickner M, Hafner J, Niblack W, Petkovic D, Equitz W (1994) Efficient and effective querying by image content. J Intell Inf Syst 3(3–4):231–262

    Article  Google Scholar 

  15. Grana M, Veganzones MA (2012) An endmember-based distance for content based hyperspectral image retrieval. Pattern Recogn 45(9):3472–3489

    Article  MATH  Google Scholar 

  16. Gueguen L, Datcu M (2008) A similarity metric for retrieval of compressed objects: application for mining satellite image time series. IEEE Trans Knowl Data Eng 20(4):562–575

    Article  Google Scholar 

  17. Guo Z, Zhang L, Zhang D (2010) A completed modeling local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  MATH  Google Scholar 

  18. Hou B, Zhang X, Bu X, Feng H (2012) SAR image despeckling based on non-subsampled shearlet transform. IEEE J Sel Top Appl Earth Obs Remote Sen 5(3):809–823

    Article  Google Scholar 

  19. Jaakkola TS, Haussler D (1999) Exploiting generative models in discriminative classifiers. Adv Neural Inf Proces Syst 11:487–493

    Google Scholar 

  20. Jalal FM, Larbo B (2005) Analytical form for a Bayesian wavelet estimator of images using the Bessel K form densities. IEEE Trans Image Process 14(2):231–240

    Article  MathSciNet  Google Scholar 

  21. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. Proceedings of the 22ed ACM International Conference on Multimedia, pp 675–678

  22. Jiang J, Cao S, Zhang G, Yuan Y (2013) Shape registration for remote-sensing images with background variation. Int J Remote Sens 34(15):5265–5281

    Article  Google Scholar 

  23. Jiang TB, Xia GS, Lu QK, Shen WM (2017) Retrieving aerial scene images with learned deep image-sketch features. J Comput Sci Technol 32(4):726–737

    Article  Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. Adv Neural Inf Proces Syst:1097–1105

  25. Le Pennec E, Mallat S (2005) Sparse geometric image representations with bandelets. IEEE Trans Image Process 14(4):423–438

    Article  MathSciNet  Google Scholar 

  26. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324

    Article  Google Scholar 

  27. Li P, Ren P (2017) Parttial randomness hashing for large-scale remote sensing image retrieval. IEEE Geosci Remote Sens Lett 14(3):464–468

    Article  Google Scholar 

  28. Li Y, Zhang Y, Tao C, Zhu H (2016) Content-based high-resolution remote sensing image retrieval via unsupervised feature learning and collaborative affinity metric fusion. Remote Sens 8(9):709

    Article  Google Scholar 

  29. Li Y, Tao C, Tan Y, Shang K, Tian J (2016) Unsupervised multilayer feature learning for satellite image scene classification. IEEE Geosci Remote Sens Lett 13(2):157–161

    Article  Google Scholar 

  30. Lim WQ (2010) The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans Image Process 19(5):1166–1180

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu Z, Wang S, Tian Q (2016) Fine-residual VLAD for image retrieval. Neurocomputing 173:1183–1191

    Article  Google Scholar 

  32. Maheswary P, Srivastava N (2009) Retrieval of remote sensing images using colour and texture attribute. Int J Comput Sci Inf Secur 4(8):3

    Google Scholar 

  33. Manjunath BS, Ohm JR, Vasudevan VV (2001) Color and texture descriptors. IEEE Trans Circuits Syst Video Technol 11(6):703–715

    Article  Google Scholar 

  34. Napoletano P (2018) Visual descriptors for content-based retrieval of remote-sensing images. Int J Remote Sens 39(5):1343–1376

    Article  Google Scholar 

  35. Özkan S, Ateş T, Tola E, Soysal M, Esen E (2014) Performance analysis of state-of-the-art representation methods for geographical image retrieval and categorization. IEEE Geosci Remote Sens Lett 11(11):1996–2000

    Article  Google Scholar 

  36. Rakvongthai Y, Oraintara S (2013) Statistical texture retrieval in noise using complex wavelets. Signal Process Image Commun 28(10):1494–1505

    Article  Google Scholar 

  37. Romero A, Gatta C, Camps-Valls G (2016) Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans Geosci Remote Sens 54(3):1349–1362

    Article  Google Scholar 

  38. Samal A, Bhatia S, Vadlamani P, Marx D (2009) Searching satellite imagery with integrated measures. Pattern Recogn 42(11):2502–2513

    Article  MATH  Google Scholar 

  39. Scott GJ, Klaric M, Davis CH, Shyu CR (2011) Entropy-balanced bitmap tree for shape-based object retrieval from large-scale satellite imagery databases. IEEE Trans Geosci Remote Sens 49(5):1603–1616

    Article  Google Scholar 

  40. Shyu CR, Klaric M, Scott GJ, Barb AS, Davis CH, Palaniappan K (2007) Geoiris: geospatial information retrieval and indexing systemcontent mining, semantics modeling, and complex queries. IEEE Trans Geosci Remote Sens 45(4):839–852

    Article  Google Scholar 

  41. Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image recognition. Proceedings of the sixth international conference on learning representations

  42. Tobin KW, Bhaduri BL, Bright EA, Cheriyadat A, Karnowski TP (2006) Automated feature generation in large-scale geospatial libraries for contentbased indexing. Photogramm Eng Remote Sens 72(5):531–540

    Article  Google Scholar 

  43. Veganzones MA, Datcu M, Grana M (2012) Dictionary based hyperspectral image retrieval. Proceedings of the 1st international conference on pattern recognition applications and methods, pp 426–432

  44. Velasco AV, Cheben P, Bock PJ (2013) High-resolution Fourier-transform spectrometer chip with microphotonic silicon spiral waveguides. Opt Lett 38(5):706–708

    Article  Google Scholar 

  45. Ves ED, Acevedo D, Ruedin A (2014) A statistical model for magnitudes and angles of wavelet frame coefficients and its application to texture retrieval. Pattern Recogn 47(9):2925–2939

    Article  Google Scholar 

  46. Wang Y, Shi M, You S (2016) DCT inspired feature transform for image retrieval and reconstruction. IEEE Trans Image Process 25(9):4406–4420

    Article  MathSciNet  Google Scholar 

  47. Wang X, Liu Y, Xu H (2016) Blind optimum detector for robust image watermarking in non-subsampled shearlet domain. Inf Sci 372:634–654

    Article  Google Scholar 

  48. Wang X, Liu Y, Li S (2016) Robust image watermarking approach using polar harmonic transforms based geometric correction. Neurocomputing 174:627–642

    Article  Google Scholar 

  49. Yang Y, Newsam S (2010) Bag-of-visual-words and spatial extensions for land-use classification. 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp 270–279

  50. Yang Y, Newsam S (2013) Geographic image retrieval using local invariant features. IEEE Trans Geosci Remote Sens 51(2):818–832

    Article  Google Scholar 

  51. Zhengrong C, Feifei YU (2013) Automatic urban area extraction using a Gabor filter and high-resolution remote sensing imagery. Geomatics Inf Sci Wuhan University 9:013

    Google Scholar 

  52. Zhou W, Shao Z, Diao C, Cheng Q (2015) High-resolution remote-sensing imagery retrieval using sparse features by auto-encoder. Remote Sens Lett 6(10):775–783

    Article  Google Scholar 

  53. Zhou W, Newsam S, Li C, Shao Z (2017) Learning low dimensional convolutional neural networks for high-resolution remote sensing image retrieval. Remote Sens 9(5):489

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.6137006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Zhu, L. A novel retrieval method for remote sensing image based on statistical model. Multimed Tools Appl 77, 24643–24662 (2018). https://doi.org/10.1007/s11042-018-5649-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5649-6

Keywords

Navigation