Skip to main content
Log in

Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a hybrid approach, which combines back propagation neural network (BPNN), generalized regression neural network (GRNN) and particle swarm optimization (PSO), is proposed to determine internal qualities in apples by using NIR diffuse reflectance spectra in the wavelength range of 400-1022 nm. The essence of the hybrid approach incorporates six phases. Firstly, the original spectral data should be submitted to Savitzky-Golay smoothing method to reduce noise. Secondly, using multiplicative scatter correction (MSC) on de-noised spectral data to modify additive and multiplicative effects. Thirdly, principal component analysis (PCA) is used to extract main features from the pretreated spectral data. Fourthly, obtaining forecasting results by using BPNN. Fifthly, obtaining forecasting results by using GRNN. Finally, these respective results are combined into the final forecasting results by using the principle of PSO. The hybrid model is examined by determining soluble solid content (SSC) and total acid content (TAC) of Green apples. Experimental results illustrate that the hybrid model shows great potential for internal quality control of apple fruits based on NIR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barnes RJ, Dhanoa MS, Lister SJ (1989) Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl Spectrosc 43:772–777. https://doi.org/10.1366/0003702894202201 https://doi.org/10.1366/0003702894202201

    Article  Google Scholar 

  2. Butz P, Hofmann C, Tauscher B (2005) Recent developments in noninvasive techniques for fresh fruit and vegetable internal quality analysis. J Food Sci 70:131–141. https://doi.org/10.1111/j.1365-2621.2005.tb08328.x https://doi.org/10.1111/j.1365-2621.2005.tb08328.x

    Article  Google Scholar 

  3. Carlomagno G, Capozzo L, Attolico G, Distante A (2004) Non-destructive grading of peaches by near-infrared spectrometry. Infrared Phys Techn 46:23–29. https://doi.org/10.1016/j.infrared.2004.03.004

    Article  Google Scholar 

  4. Cavaco AM, Pinto P, Antunes MD, da Silva JM, Guerra R (2009) ’rocha’pear firmness predicted by a vis/nir segmented model. Postharvest Biol Tec 51:311–319. https://doi.org/10.1016/j.postharvbio.2008.08.013 https://doi.org/10.1016/j.postharvbio.2008.08.013

    Article  Google Scholar 

  5. Cen H, He Y, Huang M (2006) Measurement of soluble solids contents and pH in orange juice using chemometrics and vis−NIRS. J Agr Food Chem 54:7437–7443. https://doi.org/10.1021/jf061689f

    Article  Google Scholar 

  6. Ciosek P, Brzózka Z, Wróblewski W (2006) Electronic tongue for flow-through analysis of beverages. Sensor Actuat B-Chem 118:454–460. https://doi.org/10.1016/j.snb.2006.04.051

    Article  Google Scholar 

  7. Clark CJ, McGlone VA, De Silva HN, Manning MA, Burdon J, Mowat AD (2004) Prediction of storage disorders of kiwifruit (Actinidia chinensis) based on visible-NIR spectral characteristics at harvest. Postharvest Biol Tec 32:147–158. https://doi.org/10.1016/j.postharvbio.2003.11.004

    Article  Google Scholar 

  8. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE T Syst Man Cy-S 43:996–1002. https://doi.org/10.1109/TSMCA.2012.2223670 https://doi.org/10.1109/TSMCA.2012.2223670

    Article  Google Scholar 

  9. Fan HY, Wei-Zhen Lu J, Xu ZB (2000) An empirical comparison of three novel genetic algorithms. Eng Comput 17:981–1002. https://doi.org/10.1108/02644400010360901

    Article  Google Scholar 

  10. Fan HY, Lu WZ, Xi G, Wang SJ (2003) An improved neural-network-based calibration method for aerodynamic pressure probes. J Fluids Eng 125:113–120. https://doi.org/10.1115/1.1523063

    Article  Google Scholar 

  11. Fu XP, Ying Y, Liu YD, Lu HS (2006) Detection of pear firmness using near infrared diffuse reflectance spectroscopy. Spectrosc Spect Anal 26:1038–1041

    Google Scholar 

  12. Garrido-Novell C, Pérez-Marin D, Amigo JM, Fernández-Novales J, Guerrero JE, Garrido-Varo A (2012) Grading and color evolution of apples using RGB and hyperspectral imaging vision cameras. J Food Eng 113:281–288. https://doi.org/10.1016/j.jfoodeng.2012.05.038

    Article  Google Scholar 

  13. Geladi P, MacDougall D, Martens H (1985) Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl Spectrosc 39:491–500. https://doi.org/10.1366/0003702854248656

    Article  Google Scholar 

  14. Gomez AH, He Y, Pereira AG (2006) Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using vis/NIR-spectroscopy techniques. J Food Eng 77:313–319. https://doi.org/10.1016/j.jfoodeng.2005.06.036

    Article  Google Scholar 

  15. Harker R (2001) Consumer response to apples. In: Washington Tree Fruit Postharvest Conference, Wenatchee, pp 13–14

  16. Harker FR, Gunson FA, Jaeger SR (2003) The case for fruit quality: an interpretive review of consumer attitudes, and preferences for apples. Postharvest Biol Tec 28:333–347. https://doi.org/10.1016/S0925-5214(02)00215-6 https://doi.org/10.1016/S0925-5214(02)00215-6

    Article  Google Scholar 

  17. Huang Y, Kangas LJ, Rasco BA (2007) Applications of artificial neural networks (ANNs) in food science. Crit Rev Food Sci 47:113–126. https://doi.org/10.1080/10408390600626453

    Article  Google Scholar 

  18. Huishan L, Yibin Y, Huanyu J, Yande L, Xiaping F, Wang J (2005) Application Fourier transform near infrared spectrometer in rapid estimation of soluble solids content of intact citrus fruits. In: American Society of Agricultural and Biological Engineers Annual Meeting, Tampa, p 1

  19. Jha SN, Narsaiah K, Jaiswal P, Bhardwaj R, Gupta M, Kumar R, Sharma R (2014) Nondestructive prediction of maturity of mango using near infrared spectroscopy. J Food Eng 124:152–157. https://doi.org/10.1016/j.jfoodeng.2013.10.012

    Article  Google Scholar 

  20. Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaï B M (2000) Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biol Tec 18:121–132. https://doi.org/10.1016/S0925-5214(99)00071-X

    Article  Google Scholar 

  21. Lau C (1991) Neural networks: theoretical foundations and analysis. IEEE press, Piscataway

    Google Scholar 

  22. Li M, Pullanagari RR, Pranamornkith T, Yule IJ, East AR (2017) Quantitative prediction of post storage ’Hayward’kiwifruit attributes using at harvest vis-NIR spectroscopy. J Food Eng 202:46–55. https://doi.org/10.1016/j.jfoodeng.2017.01.002

    Article  Google Scholar 

  23. Liu L, Peng Y, Liu M, Huang Z (2015) Sensor-based human activity recognition system with a multilayered model using time series shapelets. Knowl-Based Syst 90:138–152. https://doi.org/10.1016/j.knosys.2015.09.024 https://doi.org/10.1016/j.knosys.2015.09.024

    Article  Google Scholar 

  24. Liu L, Chen X, Liu M, Jia Y, Zhong J, Gao R, Zhao Y (2016) An influence power-based clustering approach with PageRank-like model. Appl Soft Comput 40:17–32. https://doi.org/10.1016/j.asoc.2015.10.050 https://doi.org/10.1016/j.asoc.2015.10.050

    Article  Google Scholar 

  25. Liu L, Cheng L, Liu Y, Jia Y, Rosenblum DS (2016) Recognizing complex activities by a probabilistic interval-based model. In: AAAI, Phoenix, pp 1266–1272

  26. Liu L, Peng Y, Wang S, Liu M, Huang Z (2016) Complex activity recognition using time series pattern dictionary learned from ubiquitous sensors. Inform Sci 340:41–57. https://doi.org/10.1016/j.ins.2016.01.020 https://doi.org/10.1016/j.ins.2016.01.020

    Article  MathSciNet  Google Scholar 

  27. Liu L, Sun L, Chen S, Liu M, Zhong J (2016) K-PRSCAN: A clustering method based on PageRank. Neurocomputing 175:65–80. https://doi.org/10.1016/j.neucom.2015.10.020

    Article  Google Scholar 

  28. Liu L, Wang Q, Wang J, Liu M (2016) A rolling grey model optimized by particle swarm optimization in economic prediction. Comput Intell-US 32:391–419. https://doi.org/10.1111/coin.12059

    Article  MathSciNet  Google Scholar 

  29. Liu L, Wang S, Peng Y, Huang Z, Liu M, Hu B (2016) Mining intricate temporal rules for recognizing complex activities of daily living under uncertainty. Pattern Recogn 60:1015–1028. https://doi.org/10.1016/j.asoc.2017.04.022 https://doi.org/10.1016/j.asoc.2017.04.022

    Article  Google Scholar 

  30. Liu L, Wang S, Su G, Huang ZG, Liu M (2017) Towards complex activity recognition using a Bayesian network-based probabilistic generative framework. Pattern Recogn 68:295–309. https://doi.org/10.1016/j.patcog.2017.02.028 https://doi.org/10.1016/j.patcog.2017.02.028

    Article  Google Scholar 

  31. Liu Y, Ying Y (2005) Use of FT-NIR spectrometry in non-invasive measurements of internal quality of ’Fuji’ apples. Postharvest Biol Tec 37:65–71. https://doi.org/10.1016/j.postharvbio.2005.02.013

    Article  Google Scholar 

  32. Liu Y, Ying Y, Fu X (2005) Prediction of valid acidity in intact apples with Fourier transform near infrared spectroscopy. J Zhejiang Univ-Sci B 6:158–164. https://doi.org/10.1631/jzus.2005.B0158

    Article  Google Scholar 

  33. Liu Y, Chen X, Ouyang A (2008) Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT-Food Sci Technol 41:1720–1725. https://doi.org/10.1016/j.lwt.2007.10.017 https://doi.org/10.1016/j.lwt.2007.10.017

    Article  Google Scholar 

  34. Liu Y, Zhang X, Cui J, Wu C, Aghajan H, Zha H (2010) Visual analysis of child-adult interactive behaviors in video sequences. In: IEEE International Conference on Virtual Systems and Multimedia, Seoul, pp 26–33

  35. Liu Y, Cui J, Zhao H, Zha H (2012) Fusion of low-and high-dimensional approaches by trackers sampling for generic human motion tracking. In: IEEE ICPR, Tsukuba Science City, pp 898–901

  36. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: IJCAI, Buenos Aires, pp 1617–1623

  37. Liu Y, Liang Y, Liu S, Rosenblum DS, Zheng Y (2016) Predicting urban water quality with ubiquitous data. arXiv:http://arXiv.org/abs/1610.09462

  38. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115. https://doi.org/10.1016/j.neucom.2015.08.096

    Article  Google Scholar 

  39. Liu Y, Zhang L, Nie L, Yan Y, Rosenblum DS (2016) Fortune teller: predicting your career path. In: AAAI, Phoenix, pp 201–207

  40. Liu Y, Zheng Y, Liang Y, Liu S, Rosenblum DS (2016) Urban water quality prediction based on multi-task multi-view learning. In: IJCAI, New York City, pp 2576–2581

  41. Lorente D, Escandell-Montero P, Cubero S, Gómez-Sanchis J, Blasco J (2015) Visible-NIR reflectance spectroscopy and manifold learning methods applied to the detection of fungal infections on citrus fruit. J Food Eng 163:17–24. https://doi.org/10.1016/j.jfoodeng.2015.04.010

    Article  Google Scholar 

  42. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76:10701–10719. https://doi.org/10.1007/s11042-015-3188-y https://doi.org/10.1007/s11042-015-3188-y

    Article  Google Scholar 

  43. Lu Y, Wei Y, Liu L, Zhong J, Sun L, Liu Y (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Multimed Tools Appl 76:10701–10719. https://doi.org/10.1007/s11042-015-3188-y https://doi.org/10.1007/s11042-015-3188-y

    Article  Google Scholar 

  44. Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ Modell Softw 15:101–124. https://doi.org/10.1016/S1364-8152(99)00007-9 https://doi.org/10.1016/S1364-8152(99)00007-9

    Article  Google Scholar 

  45. McGlone VA, Jordan RB, Martinsen PJ (2002) Vis/NIR estimation at harvest of pre-and post-storage quality indices for ’Royal Gala’apple. Postharvest Biol Tec 25:135–144. https://doi.org/10.1016/S0925-5214(01)00180-6 https://doi.org/10.1016/S0925-5214(01)00180-6

    Article  Google Scholar 

  46. Nascimento PAM, de Carvalho LC, Júnior L C C, Pereira FMV, de Almeida Teixeira GH (2016) Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biol Tec 111:345–351. https://doi.org/10.1016/j.postharvbio.2015.08.006 https://doi.org/10.1016/j.postharvbio.2015.08.006

    Article  Google Scholar 

  47. Nicolaï B M, Lötze E, Peirs A, Scheerlinck N, Theron KI (2006) Non-destructive measurement of bitter pit in apple fruit using NIR hyperspectral imaging. Postharvest Biol Tec 40:1–6. https://doi.org/10.1016/j.postharvbio.2005.12.006 https://doi.org/10.1016/j.postharvbio.2005.12.006

    Article  Google Scholar 

  48. Nicolai BM, Beullens K, Bobelyn E, Peirs A, Saeys W, Theron KI, Lammertyn J (2007) Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol Tec 46:99–118. https://doi.org/10.1016/j.postharvbio.2007.06.024

    Article  Google Scholar 

  49. Oliveri P, Casolino MC, Casale M, Medini L, Mare F, Lanteri S (2013) A spectral transfer procedure for application of a single class-model to spectra recorded by different near-infrared spectrometers for authentication of olives in brine. Anal Chim Acta 761:46–52. https://doi.org/10.1016/j.aca.2012.11.020

    Article  Google Scholar 

  50. Pearson K (1901) LIII. On lines and planes of closest fit to systems of points in space. Lond Edinb Dublin Philos Mag J Sci 2:559–572. https://doi.org/10.1080/14786440109462720

    Article  Google Scholar 

  51. Preoţiuc-Pietro D, Liu Y, Hopkins D, Ungar L (2017) Beyond binary labels: political ideology prediction of Twitter users. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, pp 729–740

  52. Schmilovitch ZE, Mizrach A, Hoffman A, Egozi H, Fuchs Y (2000) Determination of mango physiological indices by near-infrared spectrometry. Postharvest Biol Tec 19:245–252. https://doi.org/10.1016/S0925-5214(00)00102-2 https://doi.org/10.1016/S0925-5214(00)00102-2

    Article  Google Scholar 

  53. Song W, Wang H, Maguire P, Nibouche O (2016) Differentiation of organic and non-organic apples using near infrared reflectance spectroscopya pattern recognition approach. In: IEEE Sensors, Orlando, pp 1–3

  54. Specht DF (1991) A general regression neural network. IEEE T Neural Networ 2:568–576. https://doi.org/10.1109/72.97934

    Article  Google Scholar 

  55. Sun T, Huang K, Xu H, Ying Y (2010) Research advances in nondestructive determination of internal quality in watermelon/melon: A review. J Food Eng 100:569–577. https://doi.org/10.1016/j.jfoodeng.2010.05.019 https://doi.org/10.1016/j.jfoodeng.2010.05.019

    Article  Google Scholar 

  56. Urbano-Cuadrado M, De Castro ML, Pérez-Juan P M, García-Olmo J, Gómez-Nieto M A (2004) Near infrared reflectance spectroscopy and multivariate analysis in enology: Determination or screening of fifteen parameters in different types of wines. Anal Chim Acta 527:81–88. https://doi.org/10.1016/j.aca.2004.07.057 https://doi.org/10.1016/j.aca.2004.07.057

    Article  Google Scholar 

  57. Wang Q, Liu L, Wang S, Wang JZ, Liu M (2017) Predicting Beijing’s tertiary industry with an improved grey model. Appl Soft Comput 57:482–494. https://doi.org/10.1016/j.asoc.2017.04.022

    Article  Google Scholar 

  58. Ying YB, Liu YD, Wang JP, Fu XP, Li YB (2005) Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches. T ASAE 48:229–234. https://doi.org/10.13031/2013.17922 https://doi.org/10.13031/2013.17922

    Article  Google Scholar 

Download references

Acknowledgments

This study is supported by Gansu Povincial Science & Technology Department (Grant No. 1506RJZA107).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Li, L., Liu, L. et al. Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy. Multimed Tools Appl 78, 4179–4195 (2019). https://doi.org/10.1007/s11042-017-5388-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5388-0

Keywords

Navigation