Skip to main content
Log in

Sparse recovery based reversible data hiding method using the human visual system

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a novel sparse recovery based reversible data hiding (RDH) method using the human visual system (HVS) is presented. To improve the low accuracy of existing predictors, a sparse recovery based predictor is proposed. In the processes of sparse recovery, the most relevant neighbors can be adaptively chosen by using sparse representation to predict the current pixel accurately, and thus the concentrated prediction error histogram (PEH) is built to obtain good embedding performance. Moreover, to overcome the conflict between the embedding order of the traditional RDH method and the evaluation of HVS, a new embedding strategy based on just noticeable difference (JND) is designed. In this strategy, pixels are classified into sensitive and in-sensitive clusters according to JND values, and two corresponding PEHs are built. Accordingly, different inner regions of two PEHs are adjusted to meet the required embedding capacity, and the prediction error expansion (PEE) technique is utilized to embed data. Experimental results prove that the proposed method outperforms the state-of-the-art RDH methods, including JND related methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Celik MU, Sharma G, Tekalp AM et al (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Proc 14(2):253–266

    Article  Google Scholar 

  2. Chambers J, Yan W, Garhwal A et al (2015) Currency security and forensics: a survey. Mult Tools Appl 74(11):4013–4043

    Article  Google Scholar 

  3. Chen X, Sun X, Sun H et al (2013) Reversible watermarking method based on asymmetric-histogram shifting of prediction errors. J Syst Softw 86(10):2620–2626

    Article  Google Scholar 

  4. Chen YH, Huang HC, Lin CC (2016) Block-based Reversible Data Hiding with Multi-round Estimation and Difference Alteration. Mult Tools Appl 75(21):13679–13704

    Article  Google Scholar 

  5. Coatrieux G, Pan W, Cuppens-Boulahia N et al (2013) Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Trans Info Foren Sec 8(1):111–120

    Article  Google Scholar 

  6. Cui J, Liu Y, Xu Y et al (2013) Tracking generic human motion via fusion of low-and high-dimensional approaches. IEEE Trans Syst, Man, Cyber: Syst 43(4):996–1002

    Article  Google Scholar 

  7. Dang-Nguyen D-T, Pasquini C, Conotter V et al (2015) RAISE – A raw images dataset for digital Image forensics. ACM Multimedia Systems, Portland, pp 219–224

    Google Scholar 

  8. Dragoi IC, Coltuc D (2016) Reversible watermarking based on complementary predictors and context embedding. IEEE 24th Eur Sign Proc Conf (EUSIPCO) 1178–1182

  9. Fallahpour M (2008) Reversible image data hiding based on gradient adjusted prediction. IEICE Electron Exp 20(5):870–876

    Article  Google Scholar 

  10. Fridrich J, Goljan J, Du R (2001) Invertible authentication. Proceedings of SPIE Security and Watermarking of Multimedia Content, California, pp 197–208

    Google Scholar 

  11. Fu D, Jing Z, Zhao S et al (2014) Reversible data hiding based on prediction-error histogram shifting and EMD mechanism. Int J Electron Comm (AEÜ) 68(10):933–943

    Article  Google Scholar 

  12. Gloe T, Böhme R (2010) The Dresden image database for benchmarking digital image forensics. Proc 25th Symp Appl Comput 2:1585–1591

    Google Scholar 

  13. Hong W, Ma YB, Wu HC et al (2017) An efficient reversible data hiding method for AMBTC compressed images. Mult Tools Appl 76(4):5441–5460

    Article  Google Scholar 

  14. Huang HC, Lu YY, Lin J (2016) Ownership Protection for Progressive Image Transmission with Reversible Data Hiding and Visual Secret Sharing. Optik 127(15):5950–5960

    Article  Google Scholar 

  15. Jung SW, Ko SJ (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Sign Proc Lett 18(2):95–98

    Article  MathSciNet  Google Scholar 

  16. Kim K, Lee M, Lee H et al (2009) Reversible data hiding exploiting correlation between sub-sampled images. Pattern Recogn 42(11):3083–3096

    Article  MATH  Google Scholar 

  17. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin W, Kuo CCJ (2011) Perceptual visual quality metrics: A survey. J Vis Commun Image Represent 22(4):297–312

    Article  Google Scholar 

  19. Lin ZX, Peng F, Long M (2017) A reversible watermarking for authenticating 2D vector graphics based on bionic spider web. Signal Process Image Commun 57:134–146

    Article  Google Scholar 

  20. Liu Y, Nie L, Liu L et al (2016) From action to activity: Sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  21. Liu Y, Zhang L, Nie L, et al. (2016) Fortune teller: predicting your career path. Proc Thirtieth AAAI Conf Art Intel 201–207

  22. Liu Y, Zheng Y, Liang Y, et al. (2016) Urban water quality prediction based on multi-task multi-view learning. Proceedings of the 25th International Joint Conference on Artificial Intelligence

  23. Lu Y, Wei Y, Liu L et al (2017) Towards unsupervised physical activity recognition using smartphone accelerometers. Mult Tools Appl 76(8):10701–10719

    Article  Google Scholar 

  24. Luo T, Jiang G, Yu M et al (2016) Inter-view local texture analysis based stereo image reversible data hiding. Dig Sig Proc 48:116–129

    Article  MathSciNet  Google Scholar 

  25. Ma YJ, Zhu YS, Liu XY (2016) A Novel Reversible Watermarking Scheme for Relational Databases Protection Based on Histogram Shifting. J Info Hiding Mult Sig Proc 7(2):266–276

    Google Scholar 

  26. Mao JF, Niu XX, Xiao G et al (2016) A steganalysis method in the DCT domain. Mult Tools Appl 75(10):5999–6019

    Article  Google Scholar 

  27. Ni Z, Shi Y, Ansari N et al (2006) Reversible data hiding. IEEE Trans Circ Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  28. Ou B, Li X, Zhao Y et al (2013) Reversible data hiding based on PDE predictor. J Syst Softw 86(10):2700–2709

    Article  Google Scholar 

  29. Padilla-López JR, Chaaraoui AA, Flórez-Revuelta F (2015) Visual privacy protection methods: A survey. Expert Syst Appl 42(9):4177–4195

    Article  Google Scholar 

  30. Parthasarathy AK, Kak S (2007) An improved method of content based image watermarking. IEEE Trans Broadcast 53(2):468–479

    Article  Google Scholar 

  31. Qin C, Chang CC, Lin CC (2015) An adaptive reversible steganographic scheme based on the just noticeable distortion. Mult Tools Appl 74(6):1983–1995

    Article  Google Scholar 

  32. Ren WH, Li X, Lu ZM (2017) Reversible Data Hiding Scheme based on Fractal Image Coding. J Info Hiding Mult Sig Proc 8(3):544–550

    Google Scholar 

  33. Schaefer G., Stich M. (2004) UCID-an uncompressed colour image database. SPIE Proc Storage Retrieval Methods Appl Mult 472–480

  34. Schnev V, Kim HJ, Nam J et al (2010) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Syst Video Technol 5(1):187–193

    Google Scholar 

  35. Sedighi V, Cogranne R, Fridrich J (2016) Content-adaptive steganography by minimizing statistical detectability. IEEE Trans Info Foren Sec 11(2):221–234

    Article  Google Scholar 

  36. Thodi DM, Rodríguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Proc 16(3):721–730

    Article  MathSciNet  Google Scholar 

  37. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Syst Video Technol 13(8):890–897

    Article  Google Scholar 

  38. Tsai HH, Liu CC (2011) Wavelet-based image watermarking with visibility range estimation based on HVS and neural networks. Pattern Recogn 44(4):751–763

    Article  MathSciNet  MATH  Google Scholar 

  39. Tsai P, Hu Y, Yeh H (2009) Reversible image hiding scheme using predictive coding and histogram shifting. Signal Process 89(6):1129–1143

    Article  MATH  Google Scholar 

  40. Wang S, Ma L, Fang Y et al (2016) Just Noticeable Difference Estimation for Screen Content Images. IEEE Trans Image Process 25(8):3838–3851

    MathSciNet  Google Scholar 

  41. Yang X, Lin W, Lu Z et al (2005) Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile. IEEE Trans Circ Syst Video Technol 15(6):742–752

    Article  Google Scholar 

  42. Yang J, Wright J, Huang TS et al (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang Y, Zhang W, Hu X et al (2016) Improving visual quality of reversible data hiding by twice sorting. Mult Tools Appl 75(21):13663–13678

    Article  Google Scholar 

  44. Zhong C, Yue X, Lei J (2015) Visual hierarchical cluster structure: A refined co-association matrix based visual assessment of cluster tendency. Pattern Recogn Lett 59:48–55

    Article  Google Scholar 

  45. Zhou W, Yu L (2016) Binocular responses for no-reference 3D image quality assessment. IEEE Trans Mult 18(6):1077–1084

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China under Grant No. 61501270 and 61311140262, Natural Science Foundation of Ningbo under Grant No. 2017A610127 and 2016A610071. It was also sponsored by the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangyi Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, T., Jiang, G., Yu, M. et al. Sparse recovery based reversible data hiding method using the human visual system. Multimed Tools Appl 77, 19027–19050 (2018). https://doi.org/10.1007/s11042-017-5356-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5356-8

Keywords

Navigation