Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3639–3657 | Cite as

Design of reconfigurable array processor for multimedia application

  • Zhu Yun
  • Lin Jiang
  • Shuai Wang
  • Xingjie Huang
  • Hui Song
  • Xueting Li
Article
  • 70 Downloads

Abstract

With the rapid growth of the amount of computations and power consumption, there is a pressing need for a high power-efficiency architecture, which takes account of computational efficiency and flexibility of application. This paper proposes a type of array-processor architecture for multimedia application which is programmable and self-reconfigurable and consists of 1024 thin-core processing elements (PE). The performance and power dissipation are demonstrated with different multimedia application algorithms such as hash, and fractional motion estimation (FME). The results show that the proposed architecture can provide high performance with less energy consumption using parallel computation.

Keywords

Reconfigurable Array processor Multimedia retrieval Hash Fractional motion estimation (FME) 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61272120, 61602377, and 61634004), the Natural Science Foundation of Shaanxi Province of China (2015JM6326), Shaanxi Provincial Co-ordination Innovation Project of Science and Technology (2016KTZDGY02-04-02), and the Project of Education Department of Shaanxi Provincial Government (15JK1683).

References

  1. 1.
    Achuan W, Haitao C (2009) Robust perceptual image hashing based on discrete cosine transform. Chin J Saf Sci 19(4):91–96Google Scholar
  2. 2.
    Afonso V, Maich H, Agostini L, Franco D (2013) Low cost and high throughput FME interpolation for the HEVC emerging video coding standard. In Circuits and Systems (LASCAS), 2013 IEEE Fourth Latin American Symposium on (pp. 1–4). IEEEGoogle Scholar
  3. 3.
    Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197.  https://doi.org/10.1109/TCYB.2016.2539546 CrossRefGoogle Scholar
  4. 4.
    Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen T C, Chen Y H, Tsai C Y, Chen L G (2006) Low power and power aware fractional motion estimation of H. 264/AVC for mobile applications. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on (pp. 4-pp). IEEEGoogle Scholar
  6. 6.
    Cheng G, Zhou P, Han J (2016) Learning rotation -invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans Geosci Remote Sens 54(12):7405–7415CrossRefGoogle Scholar
  7. 7.
    Cheng, G., Han, J., & Lu, X. (2017). Remote sensing image scene classification: benchmark and state of the art. Proceedings of the IEEE. to be published.  https://doi.org/10.1109/JPROC.2017.2675998
  8. 8.
    Coding H E V (2013) Recommendation ITU-T H. 265. International Standard ISO/IEC, 23008–2Google Scholar
  9. 9.
    Feng Y, Ren J, Jiang J (2011) Object-based 2d-to-3d video conversion for effective stereoscopic content generation in 3d-tv applications. IEEE Trans Broadcast 57(2):500–509CrossRefGoogle Scholar
  10. 10.
    Fridrich J, Goljan M (2000) Robust hash functions for digital watermarking. In Information Technology: Coding and Computing, 2000. Proceedings. International Conference on (pp. 178–183). IEEEGoogle Scholar
  11. 11.
    Han J, Pauwels EJ, de Zeeuw P (2013) Fast saliency-aware multi-modality image fusion. Neurocomputing 111(6):70–80CrossRefGoogle Scholar
  12. 12.
    Han J, Zhang D, Cheng G, Guo L, Ren J (2015) Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans Geosci Remote Sens 53(6):3325–3337CrossRefGoogle Scholar
  13. 13.
    Jafri SMAH, Daneshtalab M, Abbas N, Leon GS, Hemani A (2016) Transmap: transformation based remapping and parallelism for high utilization and energy efficiency in cgras. IEEE Trans Comput 65(11):3456–3469MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jiang J, Kohler J, Williams C, Zaletelj J, Guntner G, Horstmann H et al (2011) Live: An integrated production and feedback system for intelligent and interactive tv broadcasting. IEEE Trans Broadcast 57(3):646–661CrossRefGoogle Scholar
  15. 15.
    Junyong D, Lin J, Jixing C (2016) An energy efficiency-driven programmable and self-reconfigurable architecture of mobile graphics processor. Available: http://or.nsfc.gov.cn/bitstream/00001903-5/158408/1/1000014273395.pdf
  16. 16.
    Kailasanathan C, Naini R S (2001) Image authentication surviving acceptable modifications using statistical measures and k-mean segmentation. IEEE-EURASIP Work. Nonlinear Sig. and Image Processing, 1Google Scholar
  17. 17.
    Kim Y, Joo H, Yoon S (2016) Inter-coarse-grained reconfigurable architecture reconfiguration technique for efficient pipelining of kernel-stream on coarse-grained reconfigurable architecture-based multicore architecture. Iet Circ Devices Syst 10(4):251–265CrossRefGoogle Scholar
  18. 18.
    León J S, Cárdenas C S, Castillo E V (2016) A high parallel HEVC Fractional Motion Estimation architecture. In ANDESCON, 2016 IEEE (pp. 1–4). IEEEGoogle Scholar
  19. 19.
    Li H, Zhang Y, Chao H (2013). An optimally scalable and cost-effective fractional-pixel motion estimation algorithm for HEVC. In Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on (pp. 1399–1403). IEEEGoogle Scholar
  20. 20.
    Ma Z, Chang X, Yang Y, Sebe N, Hauptmann AG (2017) The many shades of negativity. IEEE Trans Multimed 19(7):1558–1568CrossRefGoogle Scholar
  21. 21.
    Maich H, Afonso V, Franco D, Zatt B, Porto M, Agostini L (2013) High throughput hardware design for the HEVC fractional motion estimation interpolation unit. In Electronics, Circuits, and Systems (ICECS), 2013 IEEE 20th International Conference on (pp. 161–164). IEEEGoogle Scholar
  22. 22.
    Odamaki M, Nayar SK 2016, Cambits: A Reconfigurable Camera System. Department of Computer Science, Columbia University, New YorkGoogle Scholar
  23. 23.
    Pastuszak G, Trochimiuk M (2016) Architecture design of the high-throughput compensator and interpolator for the H. 265/HEVC encoder. J Real-Time Image Proc 11(4):663–673CrossRefGoogle Scholar
  24. 24.
    Pellauer M, Parashar A, Adler M, Ahsan B, Allmon R, Crago N et al (2015) Efficient control and communication paradigms for coarse-grained spatial architectures. ACM Trans Comput Syst 33(3):10CrossRefGoogle Scholar
  25. 25.
    Qian X, Wang H, Zhao Y, Hou X, Hong R, Wang M, Tang YY (2017) Image location inference by multisaliency enhancement. IEEE Trans Multimedia 19(4):813–821CrossRefGoogle Scholar
  26. 26.
    Ren J, Jiang J (2009) Hierarchical modeling and adaptive clustering for real-time summarization of rush videos. IEEE Trans Multimed 11(5):906–917CrossRefGoogle Scholar
  27. 27.
    Ren J, Jiang J, Chen J (2009) Shot boundary detection in mpeg videos using local and global indicators. IEEE Trans Circ Syst Video Technol 19(8):1234–1238CrossRefGoogle Scholar
  28. 28.
    Sullivan GJ, Ohm J, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circ Syst Video Technol 22(12):1649–1668CrossRefGoogle Scholar
  29. 29.
    Wei S, Liu L, Yin S (2013) Reconfigurable computing processor technology. China Sci Inf Sci 42(12):1559–1576Google Scholar
  30. 30.
    Yao X, Han J, Guo L, Bu S, Liu Z (2015) A coarse-to-fine model for airport detection from remote sensing images using target-oriented visual saliency and CRF. Neurocomputing 164(C):162–172CrossRefGoogle Scholar
  31. 31.
    Yao X, Han J, Cheng G, Qian X, Guo L (2016) Semantic annotation of high-resolution satellite images via weakly supervised learning. IEEE Trans Geosci Remote Sens 54(6):3660–3671CrossRefGoogle Scholar
  32. 32.
    Yao X, Han J, Zhang D, Nie F (2017) Revisiting Co-Saliency Detection: A Novel Approach Based on Two-Stage Multi-View Spectral Rotation Co-clustering. IEEE Trans Image Process 26(7):3196–3209MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ye L, Pan Y, Rongkai X, Di L, Jian Y (2016) FP-CNNH:, A fast image hashing algorithm based on depth convolution neural network. Comput Sci 43(9):39–46Google Scholar
  34. 34.
    You F, Peng L (2008) Fast searching algorithm for integer and fractional pixels in H.264. J Zhejiang Univ Eng Ed 42(2):332–336MathSciNetGoogle Scholar
  35. 35.
    Zabalza J, Ren J, Ren J, Liu Z, Marshall S (2014) Structured covariance principal component analysis for real-time onsite feature extraction and dimensionality reduction in hyperspectral imaging. Appl Opt 53(20):4440–4449CrossRefGoogle Scholar
  36. 36.
    Zabalza J, Ren J, Zheng J, Han J, Zhao H, Li S, Marshall S (2015) Novel two-dimensional singular spectrum analysis for effective feature extraction and data classification in hyperspectral imaging. IEEE Trans Geosci Remote Sens 53(8):4418–4433CrossRefGoogle Scholar
  37. 37.
    Zhang Q, Liu Y, Blum R S, Han J, Tao D (2017) Sparse representation based multi-sensor image fusion: a review. [online] Available: https://arxiv.org/abs/1702.03515

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Zhu Yun
    • 1
  • Lin Jiang
    • 2
  • Shuai Wang
    • 2
  • Xingjie Huang
    • 3
  • Hui Song
    • 2
  • Xueting Li
    • 4
  1. 1.School of microelectronicsXidian UniversityXi’anChina
  2. 2.School of Electronic EngineeringXi’an University of Posts and TelecommunicationsXi’anChina
  3. 3.College of Computer and Information ScienceNortheastern UniversityBostonUSA
  4. 4.School of Computer ScienceXi’an University of Posts and TelecommunicationsXi’anChina

Personalised recommendations