Skip to main content
Log in

Salient region detection using efficient wavelet-based textural feature maps

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A salient region is part of an image that captures the highest level of attention by the human visual system. In this paper, a new salient region detection method is proposed by linearly combining the feature maps for the L, a and b color channels. Since, the wavelet transform is capable of providing a multi-scale spatial-frequency decomposition of the image, the color feature maps are obtained using this transform. A scheme is proposed whereby the channel feature maps are linearly combined. The weights for the linear combination are determined by making use of the entropy of the channel feature maps and a Gaussian kernel, utilizing the fact that the salient objects are generally clustered and scene-centric. The salient region is further refined by making use of the proximity of the pixels to the centers of gravity in the image feature map. Extensive simulations are conducted in order to evaluate the performance of the proposed saliency detection scheme by applying it to the natural images from several datasets. Experimental results show that the proposed method provides values of precision, recall and F-measure larger than and that of the mean absolute error smaller than those provided by other existing methods. The performance of the proposed salient region detection method is also evaluated on noisy images and it is shown to be robust against noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abkenar MR, Ahmad MO (2015) Quaternion-based salient region detection using scale space analysis. In: Proceedings signal processing and intelligent systems conference (SPIS), pp 78–82

  2. Abkenar MR, Ahmad MO (2016) Superpixel-based salient region detection using the wavelet transform. In: Proceedings IEEE international symposium on circuits and systems (ISCAS), pp 2719–2722

  3. Achanta R, Hemami SS, Estrada FJ, Susstrunk S (2009) Frequency tuned salient region detection. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 1597–1604

  4. Arya R, Singh N, Agrawal R (2016) A novel hybrid approach for salient object detection using local and global saliency in frequency domain. Multimedia Tools and Applications 75(14):8267–8287

    Article  Google Scholar 

  5. Avidan S, Shamir A (2007) Seam carving for content-aware image resizing. ACM Trans Graph 26(3):10

    Article  Google Scholar 

  6. Batra D, Kowdle A, Parikh D, Luo J, Chen T (2010) iCoseg: Interactive Co-segmentation with Intelligent Scribble Guidance. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 3169–3176

  7. Borji A (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722

    Article  MathSciNet  Google Scholar 

  8. Borji A, Itti L (2013) State-of-the-art in visual attention modeling. IEEE Trans Pattern Anal Mach Intell 35(1):185–207

    Article  Google Scholar 

  9. Borji A, Cheng M, Jiang H (2014) Salient object detection: A survey. arXiv:1411.5878

  10. Bruce N, Tsotsos J (2005) Saliency based on information maximization. Adv Neural Inf Proces Syst 18:155–162

    Google Scholar 

  11. Cheng, Mitra N, Huang X, Torr P, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582

    Article  Google Scholar 

  12. Fugal D (2009) Conceptual wavelets in digital signal processing: an in-depth practical approach for the non-mathematician. Space and Signals Technical Publishing, San Diego

    Google Scholar 

  13. Goferman S, Zelnik-Manor L, Tal A (2012) Context-aware saliency detection. IEEE Trans Pattern Anal Mach Intell 34(10):1915–1926

    Article  Google Scholar 

  14. Guo C, Ma Q, Zhang L (2008) Spatio-temporal saliency detection using phase spectrum of quaternion Fourier transform. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

  15. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. Adv Neural Inf Proces Syst 1(2):545–552

    Google Scholar 

  16. Hou X, Zhang L (2007) Saliency detection: A spectral residual approach. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 1–8

  17. Itti L (2004) Automatic foveation for video compression using a neurobiological model of visual attention. IEEE Trans Image Process 13(10):1304–1318

    Article  Google Scholar 

  18. Imamoglu N, Lin W, Fang Y (2013) A saliency detection model using low-level features based on wavelet transform. IEEE Trans Multimedia 15(1):96–105

    Article  Google Scholar 

  19. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  20. Ko B, Nam J (2006) Object-of-interest image segmentation based on human attention and semantic region clustering. J Opt Soc Am A 23(10):2462–2470

    Article  Google Scholar 

  21. Koffka K (1935) Principles of Gestalt psychology. Routledge, London

    Google Scholar 

  22. Li J, Levine M, An X, Xu X, He H (2013) Visual saliency based on scale-space analysis in the frequency domain. IEEE Trans Pattern Anal Mach Intell 35 (4):996–1010

    Article  Google Scholar 

  23. Liu S, Hu J (2016) Visual saliency based on frequency domain analysis and spatial information. Multimedia Tools and Applications 75(23):16699–16711

    Article  Google Scholar 

  24. Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  25. Ma YF, Zhang HJ (2003) Contrast-based image attention analysis by using fuzzy growing. In: Proceedings ACM international conference on multimedia, pp 374–381

  26. Merry RJ (2005) Wavelet theory and application: a literature study. Eindhoven University of Technology, Eindhoven

    Google Scholar 

  27. Murray N, Vanrell M, Otazu X, Parraga CA (2011) Saliency estimation using a non-parametric low-level vision model. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 433–440

  28. Sun L, Tang Y, Zhang H (2016) Visual saliency detection based on multi-scale and multi-channel mean. Multimedia Tools and Applications 75(1):667–684

    Article  Google Scholar 

  29. Tian Q, Sebe N, Lew M, Loupias E, Huang T (2001) Image retrieval using wavelet-based salient points. J Electron Imaging 10(4):835–849

    Article  Google Scholar 

  30. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 839–846

  31. Walther D, Koch C (2006) Modeling attention to salient proto-objects. Neural Netw 19(9):1395–1407

    Article  MATH  Google Scholar 

  32. Xie X, Zaitsev Y, Velasquez-Garcia L, Teller S, Livermore C (2014) Compact, scalable, high-resolution, MEMS-enabled tactile displays. In: Proceedings solid-state sensors, actuators, and microsystems workshop, pp 127–130

  33. Xu X, Mu N, Chen L, Zhang X (2016) Hierarchical salient object detection model using contrast-based saliency and color spatial distribution. Multimedia Tools and Applications 75(5):2667–2679

    Article  Google Scholar 

  34. Yan Q, Xu L, Shi J, Jia J (2013) Hierarchical saliency detection. In: Proceedings IEEE conference on computer vision and pattern recognition (CVPR), pp 1155–1162

  35. Yuan Y, Wang J, Li B, Meng MQ (2015) Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans Med Imaging 34(10):2046–2057

    Article  Google Scholar 

  36. Zhang L, Lin W (2013) Selective visual attention: computational models and applications. Wiley, New York

    Book  Google Scholar 

  37. Zhang GX, Cheng MM, Hu SM, Martin RR (2009) A shape-preserving approach to image resizing. Comput Graphics Forum 28(7):1897–1906. Blackwell, New York

    Article  Google Scholar 

  38. Zhou C, Liu C (2015) An efficient segmentation method using saliency object detection. Multimedia Tools and Applications 74(15):5623–5634

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Sciences and Engineering Research Council (NSERC) of Canada and in part by the Regroupement Strategique en Microelectronique du Quebec (ReSMiQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Omair Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei Abkenar, M., Ahmad, M.O. Salient region detection using efficient wavelet-based textural feature maps. Multimed Tools Appl 77, 16291–16317 (2018). https://doi.org/10.1007/s11042-017-5199-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5199-3

Keywords

Navigation