Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3229–3243 | Cite as

View-based 3D model retrieval via supervised multi-view feature learning



With the development of the processing technologies of 3D model and the increasing of 3D model in different application flieds, 3D model retrieval is attracting more and more people’s attention. In order to handle this problem, most of approaches focus on the feature extraction form different virtual view. It is hard to guarantee the robustness and also ignore the correlation between both views. Thus, we propose an effective view-based 3D model retrieval method via supervised multi-view feature learning (SMFL). First, the subspace dimension of viusal feature is generated through Singular Value Decomposition (SVD) algorithm. This step is used to select main information from multi-view in order to reduce the final amount of calculation; Secondly, we consider the relationship of multi-view from same class and the correlation between two different classes to make the feature mapping in order to reduce the different of views from the same class and increase the different of views from the difference class; Finally, the projection mapping corresponding to the inner product of each 3D model helps to calculate the similarities between two different 3D models. The extensive experiments are conducted on popular ETH, NTU, MV-RED and PSB 3D model datasets with Zernike moments. The comparative results or The experimental results with existing 3D model retrieval methods show the superiority of the proposed method.


3D model retrieval Multi-view Feature learning Feature dimensionality reduction SVD Zernike moments 


  1. 1.
    Ansary TF, Daoudi M, Vandeborre JP (2007) A Bayesian 3-d search engine using adaptive views clustering. IEEE Trans Multimedia 9(1):78–88CrossRefGoogle Scholar
  2. 2.
    Aubry M, Schlickewei U, Cremers D (2011) The wave kernel signature: a quantum mechanical approach to shape analysis. In: IEEE international conference on computer vision workshops, pp 1626–1633Google Scholar
  3. 3.
    Brennecke A, Isenberg T (2004) 3d shape matching using skeleton graphs. In: Simulation und visualisierung, pp 299–310Google Scholar
  4. 4.
    Bufler FM, Sponton L, Erlebach A (2008) Finfet stress engineering using 3d mechanical stress and 2d monte carlo device simulation. In: ESSDERC 2008 - 38th European solid-state device research conference, pp 166–169Google Scholar
  5. 5.
    Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV (2005) Feature-based similarity search in 3d object databases. ACM Comput Surv 37(4):345–387CrossRefGoogle Scholar
  6. 6.
    Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2016.2582746
  7. 7.
    Chang X, Nie F, Wang S, Yang Y, Zhou X, Zhang C (2016) Compound rank- k projections for bilinear analysis. IEEE Transactions on Neural Networks and Learning Systems 27(7):1502–1513MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chang X, Ma Z, Lin M, Yang Y, Hauptmann AG (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process 26(8):3911–3920MathSciNetCrossRefGoogle Scholar
  9. 9.
    Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann AG (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Transactions on Cybernetics 47(5):1180–1197CrossRefGoogle Scholar
  10. 10.
    Chang X, Yu YL, Yang Y, Xing EP (2017) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell 39(8):1617–1632CrossRefGoogle Scholar
  11. 11.
    Chen D, Tian X, Shen Y, Ming O (2003) On visual similarity based 3d model retrieval. Comput Graphics Forum 22(3):223–232CrossRefGoogle Scholar
  12. 12.
    Conrad M, Doncker RWD, Schniedenharn M, Diatlov A (2014) Packaging for power semiconductors based on the 3d printing technology selective laser melting. In: European conference on power electronics and applications, pp 1–7Google Scholar
  13. 13.
    Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27CrossRefMATHGoogle Scholar
  14. 14.
    Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: IEEE computer society conference on computer vision and pattern recognition, pp 886–893Google Scholar
  15. 15.
    Daras P, Axenopoulos A (2010) A 3d shape retrieval framework supporting multimodal queries. Int J Comput Vis 89(2):229–247CrossRefGoogle Scholar
  16. 16.
    Duchenne O, Bach F, Kweon IS, Ponce J (2011) A tensor-based algorithm for high-order graph matching. IEEE Trans Pattern Anal Mach Intell 33(12):2383–2395CrossRefGoogle Scholar
  17. 17.
    Edelman A, Arias TA, Smith ST (1998) The geometry of algorithms with orthogonality constraints. SIAM J Matrix Anal Appl 20(2):303–353MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Elad A, Kimmel R (2003) On bending invariant signatures for surfaces. IEEE Trans Pattern Anal Mach Intell 25(10):1285–1295CrossRefGoogle Scholar
  19. 19.
    Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search engine for 3d models. ACM Trans Graph 22(1):83–105CrossRefGoogle Scholar
  20. 20.
    Gao Y, Dai Q, Zhang N (2010) 3D model comparison using spatial structure circular descriptor. Pattern Recogn 43(3):1142–1151CrossRefMATHGoogle Scholar
  21. 21.
    Gao Y, Dai Q, Wang M, Zhang N (2011) 3D model retrieval using weighted bipartite graph matching. Signal Process Image Commun 26(1):39–47CrossRefGoogle Scholar
  22. 22.
    Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua T (2012) Camera constraint-free view-based 3-d object retrieval. IEEE Trans Image Process 21 (4):2269–2281MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-D object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14(5):403–420MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Guetat G, Maitre M, Joly L, Lai SL, Lee T, Shinagawa Y (2006) Automatic 3-d grayscale volume matching and shape analysis. IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine and Biology Society 10(2):362–376CrossRefGoogle Scholar
  26. 26.
    Harandi MT, Sanderson C, Shirazi S, Lovell BC (2011) Graph embedding discriminant analysis on grassmannian manifolds for improved image set matching. In: IEEE computer society conference on computer vision and pattern recognition, pp 2705–2712Google Scholar
  27. 27.
    Helmke U, Huper K, Trumpf J (2007) Newton’s method on grassmann manifolds. arXiv:0709.2205
  28. 28.
    Hilaga M, Shinagawa Y, Kohmura T, Kunii T (2001) Topology matching for fully automatic similarity estimation of 3d shapes. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques, pp 203–212Google Scholar
  29. 29.
    Hu MC, Chen CW, Cheng WH, Chang CH, Lai JH, Wu JL (2015) Real-time human movement retrieval and assessment with kinect sensor. IEEE Transactions on Cybernetics 45(4):742–753CrossRefGoogle Scholar
  30. 30.
    Huang Z, Wang R, Shan S, Chen X (2015) Projection metric learning on grassmann manifold with application to video based face recognition. In: IEEE computer society conference on computer vision and pattern recognition, pp 140–149Google Scholar
  31. 31.
    Ip CY, Lapadat D, Sieger L, Regli WC (2002) Using shape distributions to compare solid models. In: Proceedings of the seventh ACM symposium on solid modeling and applications, pp 273–280Google Scholar
  32. 32.
    Khotanzad A, Hong Y (1990) Invariant image recognition by Zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  33. 33.
    Kim T, Chae E, Kim K, Pak H, Song S (2011) The affect image scale of ride-based 3d films: focused on the affect axis deduction. In: 7th international conference on networked computing, pp 161–164Google Scholar
  34. 34.
    Kim TK, Kittler J, Cipolla R (2007) Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans Pattern Anal Mach Intell 29(6):1005–1018CrossRefGoogle Scholar
  35. 35.
    Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp 1097–1105Google Scholar
  36. 36.
    Leibe B, Schiele B (2003) Analyzing appearance and contour based methods for object categorization. In: IEEE computer society conference on computer vision and pattern recognition, vol 2, pp II–409–15Google Scholar
  37. 37.
    Li X, Cao Q, Wei S (2017) 3D object retrieval based on multi-view convolutional neural networks. Multimedia Tools and Applications. doi: 10.1007/s11042-016-4250-0
  38. 38.
    Lian Z, Godil A, Bustos B, Daoudi M, Hermans J, Kawamura S, Kurita Y, Lavoue G (2013) A comparison of methods for non-rigid 3d shape retrieval. Pattern Recogn 46(1):449–461CrossRefGoogle Scholar
  39. 39.
    Liu A, Wang Z, Nie W, Su Y (2015) Graph-based characteristic view set extraction and matching for 3d model retrieval. Inf Sci 320:429–442CrossRefGoogle Scholar
  40. 40.
    Liu A, Nie W, Gao Y, Su Y (2016) Multi-modal clique-graph matching for view-based 3d model retrieval. IEEE Trans Image Process 25(5):2103–2116MathSciNetCrossRefGoogle Scholar
  41. 41.
    Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110CrossRefGoogle Scholar
  42. 42.
    Lu K, Ji R, Tang J, Gao Y (2014) Learning-based bipartite graph matching for view-based 3d model retrieval. IEEE Trans Image Process 23(10):4553MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Mottaghi R, Ranganathan A, Yuille A (2011) A compositional approach to learning part-based models of objects. In: IEEE international conference on computer vision workshops, pp 561–568Google Scholar
  44. 44.
    Nie W, Liu A, Gao A, Su Y (2015) Clique-graph matching by preserving global and local structure. In: IEEE computer society conference on computer vision and pattern recognition, pp 4503–4510Google Scholar
  45. 45.
    Nie W, Liu A, Wang Z, Su Y (2016) Effective 3d object detection based on detector and tracker. Neurocomputing 215:63–70CrossRefGoogle Scholar
  46. 46.
    Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph 21(4):807–832MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    Papoiu AD, Emerson NM, Patel TS, Kraft RA, Valdes-Rodriguez R, Nattkemper LA, Coghill RC, Yosipovitch G (2014) Voxel-based morphometry and arterial spin labeling fmri reveal neuropathic and neuroplastic features of brain processing of itch in end-stage renal disease. J Neurophys 112(7):1729–1738CrossRefGoogle Scholar
  48. 48.
    Paquet E, Rioux M, Murching A, Naveen T, Tabatabai A (2000) Description of shape information for 2-d and 3-d objects. Signal Process Image Commun 16(1):103–122CrossRefGoogle Scholar
  49. 49.
    Regli W, Cicirello V (2000) Managing digital libraries for computer-aided design. Comput Aided Des 32(2):119–132CrossRefGoogle Scholar
  50. 50.
    Rodola E, Bulo SR, Windheuser T, Vestner M, Cremers D (2014) Dense non-rigid shape correspondence using random forests. In: IEEE computer society conference on computer vision and pattern recognition, pp 4177–4184Google Scholar
  51. 51.
    Rodola E, Albarelli A, Cremersa D, Torsello A (2015) A simple and effective relevance-based point sampling for 3d shapes. Pattern Recogn Lett 59:41–47CrossRefGoogle Scholar
  52. 52.
    Shih JL, Lee CH, Wang JT (2007) A new 3d model retrieval approach based on the elevation descriptor. Pattern Recogn 40(1):283–295CrossRefMATHGoogle Scholar
  53. 53.
    Shinagawa Y, Kunii TL (1991) Constructing a reeb graph automatically from cross sections. IEEE Comput Graph Appl 11(6):44–51CrossRefGoogle Scholar
  54. 54.
    Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and retrieval. In: 2003 shape modeling international, pp 130–139Google Scholar
  55. 55.
    Vavilov D, Dovzhenko D, Anisimov A (2010) Perspectives of stereo 3d tv applications development. In: 2010 6th central and eastern european software engineering conference (CEE-SECR), pp 175–178Google Scholar
  56. 56.
    Vogel J, Schiele B (2006) Performance evaluation and optimization for content-based image retrieval. Pattern Recogn 39(5):897–909CrossRefMATHGoogle Scholar
  57. 57.
    Wu Z, Song S, Khosla A, Yu F (2015) 3D shapenets a deep representation for volumetric shapes. In: IEEE computer society conference on computer vision and pattern recognition, pp 1912–1920Google Scholar
  58. 58.
    Zhang S (2012) Review of 3d technology for semiconductor optoelectronics. In: Photonics and optoelectronics, pp 1–3Google Scholar
  59. 59.
    Zhu L, Shen J, Jin H, Xie L, Zheng R (2015) Landmark classification with hierarchical multi-modal exemplar feature. IEEE Trans Multimedia 17(7):981–993CrossRefGoogle Scholar
  60. 60.
    Zhu L, Shen J, Jin H, Zheng R, Xie L (2015) Content-based visual landmark search via multimodal hypergraph learning. IEEE Transactions on Cybernetics 45 (12):2756–2769CrossRefGoogle Scholar
  61. 61.
    Zhu L, She J, Liu X, Xie L, Nie L (2016) Learning compact visual representation with canonical views for robust mobile landmark search. In: International joint conference on artificial intelligence, pp 3959–3965Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Tianjin UniversityTianjinChina

Personalised recommendations