Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3029–3048 | Cite as

Nonnegative matrix factorization by joint locality-constrained and 2,1-norm regularization

  • Ling Xing
  • Hao Dong
  • Wei Jiang
  • Kewei Tang
Article

Abstract

Nonnegative matrix factorization has been widely applied recently. The nonnegativity constraints result in parts-based, sparse representations which can be more robust than global, non-sparse features. However, existing techniques could not accurately dominate the sparseness. To address this issue, we present a unified criterion, called Nonnegative Matrix Factorization by Joint Locality-constrained and 2,1-norm Regularization(NMF2L), which is designed to simultaneously perform nonnegative matrix factorization and locality constraint as well as to obtain the row sparsity. We reformulate the nonnegative local coordinate factorization problem and use 2,1-norm on the coefficient matrix to obtain row sparsity, which results in selecting relevant features. An efficient updating rule is proposed, and its convergence is theoretically guaranteed. Experiments on benchmark face datasets demonstrate the effectiveness of our presented method in comparison to the state-of-the-art methods.

Keywords

Nonnegative matrix factorization Local constraint Clustering 

Notes

Acknowledgments

We would like to thank all anonymous reviewers for their helpful comments. This work is supported by the Natural Science Foundation of Liaoning No. 2015020070, and the Natural Science Foundation of China No.61171109 and 61175048.

References

  1. 1.
    Belhumeur PN, Hespanha JP, Kriegman D et al (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720CrossRefGoogle Scholar
  2. 2.
    Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University PressGoogle Scholar
  3. 3.
    Bradley PS, Mangasarian OL (1998) Feature selection via concave minimization and support vector machines. In: International conference on machine learning, pp 82–90Google Scholar
  4. 4.
    Cai D, He X, Han J et al (2007) Spectral regression: a unified approach for sparse subspace learning. In: International conference on data mining, pp 73–82Google Scholar
  5. 5.
    Cai D, He X, Han J et al (2011) Graph regularized nonnegative matrix factorization for data representation. IEEE Trans Pattern Anal Mach Intell 33 (8):1548–1560CrossRefGoogle Scholar
  6. 6.
    Chang X, Nie F, Yang Y et al (2014) A convex formulation for semi-supervised multi-label feature selection. In: Twenty-eighth AAAI conference on artificial intelligence. AAAI Press, pp 1171–1177Google Scholar
  7. 7.
    Chang X, Nie F, Yang Y et al (2016) Convex sparse PCA for unsupervised feature learning. ACM Trans Knowl Discov Data (TKDD) 11(1):3:1–3:16Google Scholar
  8. 8.
    Chang X, Yang Y (2016) Semisupervised feature analysis by mining correlations among multiple tasks. IEEE Transactions on Neural Networks and Learning Systems. doi: 10.1109/TNNLS.2016.2582746
  9. 9.
    Chao Y, Yeh Y, Chen Y et al (2011) Locality-constrained group sparse representation for robust face recognition. In: International conference on image processing, pp 761–764Google Scholar
  10. 10.
    Chen Y, Zhang J, Cai D et al (2013) Nonnegative local coordinate factorization for image representation. IEEE Trans Image Process 22(3):969–979MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Geng B, Tao D, Xu C et al (2012) Ensemble manifold regularization. IEEE Trans Pattern Anal Mach Intell 34(6):1227–1233CrossRefGoogle Scholar
  12. 12.
    Gu Q, Li Z, Han J et al (2011) Joint feature selection and subspace learning. In: International joint conference on artificial intelligence, pp 1294–1299Google Scholar
  13. 13.
    Hou C, Nie F, Yi D et al (2011) Feature selection via joint embedding learning and sparse regression. In: International joint conference on artificial intelligence, pp 1324–1329Google Scholar
  14. 14.
    Hoyer PO (2002) Non-negative sparse coding. In: Proceedings of IEEE workshop on neural networks for signal processing, pp 557–565Google Scholar
  15. 15.
    Jiang W, Li M, Zhang Y (2014) Neighborhood preserving convex nonnegative matrix factorization. Math Probl Eng 2014(2):1–8MathSciNetGoogle Scholar
  16. 16.
    Jiang W, Liu J, Qi H et al (2016) Robust subspace segmentation via nonconvex low rank representation. Inf Sci 340:144–158Google Scholar
  17. 17.
    Kotsiantis SB (2014) RETRACTED ARTICLE: feature selection for machine learning classification problems: a recent overview[J]. Artif Intell Rev 42(1):157–157CrossRefGoogle Scholar
  18. 18.
    Lee D, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791CrossRefMATHGoogle Scholar
  19. 19.
    Liu H, Wu Z, Li X et al (2012) Constrained nonnegative matrix factorization for image representation. IEEE Trans Pattern Anal Mach Intell 34(7):1299–1311CrossRefGoogle Scholar
  20. 20.
    Liu H, Yang Z, Wu Z et al (2011) Locality-constrained concept factorization. In: International joint conference on artificial intelligence, pp 1378–1383Google Scholar
  21. 21.
    Liu H, Yang Z, Wu Z et al (2012) A-optimal non-negative projection for image representation. Comput Vision Pattern Recogn, 1592–1599Google Scholar
  22. 22.
    Luo M, Nie F, Chang X et al (2016) Avoiding optimal mean robust PCA/2DPCA with non-greedy l1-norm maximization. In: International joint conference on artificial intelligenceGoogle Scholar
  23. 23.
    Luo M, Nie F, Chang X et al (2017) Probabilistic non-negative matrix factorization and its robust extensions for topic modeling. In: Thirty-first AAAI conference on artificial intelligenceGoogle Scholar
  24. 24.
    Nie F, Huang H, Cai X et al (2010) Efficient and robust feature selection via joint 2,1-norms minimization. Neural Inform Process Syst, 1813–1821Google Scholar
  25. 25.
    Nie L, Song X, Chua TS (2016) Learning from multiple social networks. Synthesis Lect Inform Concepts Retriev Serv 8(2):118–129Google Scholar
  26. 26.
    Nie L, Zhang L, Wang M et al (2017) Learning user attributes via mobile social multimedia analytics. ACM Trans Intell Syst Technol (TIST) 8(3):36–47Google Scholar
  27. 27.
    Qi H, Li K, Shen Y et al (2012) Object-based image retrieval with kernel on adjacency matrix and local combined features. ACM Trans Multimed Comput Commun Appl 8(4):1–18CrossRefGoogle Scholar
  28. 28.
    Roweis S, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326CrossRefGoogle Scholar
  29. 29.
    Song X, Nie L, Zhang L et al (2015) Interest inference via structure-constrained multi-source multi-task learning. In: International conference on artificial intelligence. AAAI Press, pp 2371–2377Google Scholar
  30. 30.
    Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. Comput Vision Pattern Recogn, 3360–3367Google Scholar
  31. 31.
    Wang R, Nie F, Yang X et al (2015) Robust 2DPCA with non-greedy, 1-norm maximization for image analysis[J]. IEEE Trans Cybern 45(5):1108–1112CrossRefGoogle Scholar
  32. 32.
    Wei C, Chao Y, Yeh Y et al (2013) Locality-sensitive dictionary learning for sparse representation based classification. Pattern Recogn 46(5):1277–1287CrossRefMATHGoogle Scholar
  33. 33.
    Xu W, Gong Y (2004) Document clustering by concept factorization. In: Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval. ACM, pp 202–209Google Scholar
  34. 34.
    Xu W, Liu X, Gong Y et al (2003) Document clustering based on non-negative matrix factorization. In: International ACM SIGIR conference on research and development in information retrieval, pp 267–273Google Scholar
  35. 35.
    Yang Y, Shen HT, Ma Z et al (2011) 2,1-norm regularized discriminative feature selection for unsupervised learning[c]. In: International joint conference on artificial intelligence, pp 1589–1594Google Scholar
  36. 36.
    Yu K, Zhang T, Gong Y et al (2009) Nonlinear learning using local coordinate coding. Neural information processing systems, 2223–2231Google Scholar
  37. 37.
    Zheng M, Bu J, Chen C et al (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Information EngineeringHenan University of Science and TechnologyLuoyangChina
  2. 2.School of MathematicsLiaoning Normal UniversityDalianChina

Personalised recommendations