Skip to main content
Log in

Image super-resolution via two coupled dictionaries and sparse representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In image processing, the super-resolution (SR) technique has played an important role to perform high-resolution (HR) images from the acquired low-resolution (LR) images. In this paper, a novel technique is proposed that can generate a SR image from a single LR input image. Designed framework can be used in images of different kinds. To reconstruct a HR image, it is necessary to perform an intermediate step, which consists of an initial interpolation; next, the features are extracted from this initial image via convolution operation. Then, the principal component analysis (PCA) is used to reduce information redundancy after features extraction step. Non-overlapping blocks are extracted, and for each block, the sparse representation is performed, which it is later used to recover the HR image. Using the quality objective criteria and subjective visual perception, the proposed technique has been evaluated demonstrating their competitive performance in comparison with state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Abedi A, Kabir E (2016) In greedy pursuit of new directions: (Nearly) orthogonal matching pursuit by directional optimisation. Multimed Tool Appl. pp 1–24. doi:10.1007/s11042-016-3919-8

  2. Acharya A, Meher S In: 2012 Sixth international conference on sensing technology (ICST) (IEEE, 2012), pp 57–62. doi:10.1109/ICSensT.2012.6461746. http://ieeexplore.ieee.org/document/6461746/

  3. Alvarez-Ramos V, Ponomaryov V (2016) 2016 international conference on electronics, communications and computers (CONIELECOMP). On the role of sparse and redundant representations in image processing, pp 156–161. doi:10.1109/CONIELECOMP.2016.7438568. http://ieeexplore.ieee.org/document/7438568/

  4. Alvarez-Ramos V, Ponomaryov V, Reyes-Reyes R, Gallegos-Funes F (2016) Fractional-order sparse representation for image denoising 2016 9th international Kharkiv symposium on physics and engineering of microwaves, millimeter and submillimeter waves (MSMW), pp 1–4. doi:10.1109/MSMW.2016.7538183

    Google Scholar 

  5. Ameer S, Basir O In: Image quality metrics: PSNR vs. SSIM. In: 2008 9th international conference on signal processing (IEEE, 2008), pp 728–732. doi:10.1109/ICOSP.2008.4697233. http://ieeexplore.ieee.org/document/4697233/

  6. Anbarjafari G, Demirel H (2010) Soft edge smoothness prior for alpha channel super resolution. ETRI J 32(3):390. doi:10.4218/etrij.10.0109.0303. http://etrij.etri.re.kr/Cyber/BrowseAbstract.jsp?vol=32&num=3&pg=390

    Article  Google Scholar 

  7. Anbarjafari G, Izadpanahi S, Demirel H (2015) Single image super-resolution using self-examples and texture synthesis. SIViP 9(1):87. doi:10.1007/s11760-012-0422-1

    Article  Google Scholar 

  8. Azimi-Sadjadi MR, Kopacz J, Klausner N Digital image super-resolution using adaptive interpolation based on Gaussian function. In: 2014 IEEE international conference on image processing (ICIP) (IEEE, 2014), pp 1599–1603. doi:10.1109/ICIP.2014.7025320. http://ieeexplore.ieee.org/document/7025320/

  9. Blumensath T, Davies ME (2007) Image sequence denoising via sparse and redundant representations. In: European signal processing conference (Eusipco), 340

  10. Bovik ACAC Handbook of image and video processing (Elsevier Academic Press, 2005)

  11. Chang X, Nie F, Yang Y, Zhang C, Huang H (2016) ACM Trans Knowl Discov Data 11(1):3:1. doi:10.1145/2910585

  12. Chang X, Yang Y (2016) IEEE Trans Neural Netw Learn Syst PP(99):1. doi:10.1109/TNNLS.2016.2582746

  13. Chavez-Roman H, Ponomaryov V (2014) K-SVD dictionary learning using a fast OMP with applications. IEEE Geosci Remote Sens Lett 11(10):1777. doi:10.1109/LGRS.2014.2308905. http://ieeexplore.ieee.org/document/6774445/

    Article  Google Scholar 

  14. Chen L, Hu R, Liang C, Li Q, Han Z (2016) Multimed Tool Appl pp 1–27. doi:10.1007/s11042-015-3145-9

  15. Chen Y, Liu J, Hu Y, Yang J, Shi L, Shu H, Gui Z, Coatrieux G, Luo L (2017) Phys Med Biol 62(6):2103. http://stacks.iop.org/0031-9155/62/i=6/a=2103

  16. Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux JL, Chen W (2014) IEEE Trans Med Imaging 33(12):2271. doi:10.1109/TMI.2014.2336860

  17. Dai S, Han M, Xu W, Wu Y, Gong Y In: 2007 IEEE conference on computer vision and pattern recognition (IEEE, 2007), pp 1–8. doi:10.1109/CVPR.2007.383028. http://ieeexplore.ieee.org/document/4270053/

  18. Damkat C (2011) SIViP 5(3):343. doi:10.1007/s11760-010-0205-5

  19. Dong C, Loy CC, He K, Tang X (2016) IEEE Trans Pattern Anal Mach Intell 38(2):295. doi:10.1109/TPAMI.2015.2439281

    Article  Google Scholar 

  20. Elad M, Figueiredo MAT, Ma Y (2010) Synthetic image super resolution using FeatureMatch. Proc IEEE 98(6):972. doi:10.1109/JPROC.2009.2037655. http://ieeexplore.ieee.org/document/5420029/

    Article  Google Scholar 

  21. Geng L, Ji Z, Yuan Y, Yin Y (2017) Accurate image super-resolution using very deep convolutional networks. IEEE/CAA J Automat Sin PP (99):1. doi:10.1109/JAS.2017.7510412

    Google Scholar 

  22. Han W, Chu J, Wang L, Pan C (2016) Multimed Tool Appl pp 1–13. doi:10.1007/s11042-016-3656-z

  23. Hore A, Ziou D Wavelet domain image resolution enhancement using cycle-spinning. In: 2010 20th international conference on pattern recognition (IEEE, 2010), pp 2366–2369. doi:10.1109/ICPR.2010.579. http://ieeexplore.ieee.org/document/5596999/

  24. Hu Y, Wang N, Tao D, Gao X, Li X (2016) Antialiased super-resolution with parallel high-frequency synthesis. IEEE Trans Image Process 25(9):4091. doi:10.1109/TIP.2016.2580942. http://ieeexplore.ieee.org/document/7491236/

    Article  MathSciNet  Google Scholar 

  25. Jiang J, Hu R, Han Z, Lu T (2014) Fusing soft-decision-adaptive and bicubic methods for image interpolation. Multimed Tool Appl 72 (3):2573. doi:10.1007/s11042-013-1567-9

    Article  Google Scholar 

  26. Jiang X, Sheng B, Lin W, Li P, Ma L, Shen R (2015) Super resolution image generation using wavelet domain interpolation with edge extraction via a sparse representation. Multimed Tool Appl. pp 1–18. doi:10.1007/s11042-015-3049-8

  27. Kang X, Li S, Hu J (2012) International conference on pattern recognition (ICPR) 1043

  28. Keys R (1981) IEEE Trans Acoust Speech Signal Process 29 (6):1153. doi:10.1109/TASSP.1981.1163711. http://ieeexplore.ieee.org/document/1163711/

    Article  MathSciNet  Google Scholar 

  29. Kim H, Park S, Wang J, Kim Y, Jeong J In: 2009 first international conference on advances in multimedia (IEEE, 2009), pp 33–36. doi:10.1109/MMEDIA.2009.14. http://ieeexplore.ieee.org/document/5206916/

  30. Kim J, Lee JK, Lee KM (2016) In: The IEEE conference on computer vision and pattern recognition (CVPR oral)

  31. Kodak Image Database. http://r0k.us/graphics/kodak/

  32. Li J, Qu Y, Li C, Xie Y (2016) A novel face super resolution approach for noisy images using contour feature and standard deviation prior. Multimed Tool Appl 75(7):4115. doi:10.1007/s11042-015-3016-4

    Article  Google Scholar 

  33. Mairal J, Bach F, Ponce J, Sapiro G, Zisserman A In: Dictionaries for sparse representation modeling. 2009 IEEE 12th international conference on computer vision (IEEE, 2009), pp 2272–2279. doi:10.1109/ICCV.2009.5459452. http://ieeexplore.ieee.org/document/5459452/

  34. Mallat S, Yu G (2010) Image quality metrics: PSNR vs. SSIM. IEEE Trans Image Process 19(11):2889. doi:10.1109/TIP.2010.2049927. http://ieeexplore.ieee.org/document/5460916/

    Article  MathSciNet  Google Scholar 

  35. Pan L, Yan W, Zheng H (2016) Discriminative feature representation: an effective postprocessing solution to low dose CT imaging. Multimed Tool Appl 75 (18):11037. doi:10.1007/s11042-015-2834-8

    Article  Google Scholar 

  36. Protter M, Elad M (2009) Non-local sparse models for image restoration. IEEE Trans Image Process 18(1):27. doi:10.1109/TIP.2008.2008065. http://ieeexplore.ieee.org/document/4694006/

    Article  MathSciNet  MATH  Google Scholar 

  37. Ramakanth SA, Babu RV (2015) Multimed Tool Appl 74(17):6691. doi:10.1007/s11042-014-1925-2

    Article  Google Scholar 

  38. Rubinstein R, Bruckstein AM, Elad M (2010) Proc IEEE 98(6):1045. doi:10.1109/ICCV.2009.5459452. http://ieeexplore.ieee.org/document/5452966/

    Article  Google Scholar 

  39. Sahoo SK, Makur A (2013) Dictionary training for sparse representation as generalization of K-Means clustering. IEEE Signal Process Lett 20(6):587. doi:10.1109/LSP.2013.2258912. http://ieeexplore.ieee.org/document/6504716/

    Article  Google Scholar 

  40. Sajjad M, Ejaz N, Mehmood I, Baik SW (2015) Multimed Tool Appl 74 (20):8961. doi:10.1007/s11042-013-1570-1

    Article  Google Scholar 

  41. Shen B, Hu W, Zhang Y, Zhang YJ (2009) In: 2009 IEEE international conference on acoustics, speech and signal processing, pp 697–700. doi:10.1109/ICASSP.2009.4959679

  42. SIPI Image Database. Image super-resolution via sparse representation http://sipi.usc.edu/database/

  43. Temizel A, Vlachos T (2005) Electron Lett 41(3):119. doi:10.1049/el:20057150

    Article  Google Scholar 

  44. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) New edge-directed interpolation. IEEE Transac image Process: A Publication IEEE Signal Process Society 13(4):600. http://www.ncbi.nlm.nih.gov/pubmed/15376593

    Article  Google Scholar 

  45. Xin L, Orchard M (2001) IEEE Trans Image Process 10(10):1521. doi:10.1109/83.951537. http://ieeexplore.ieee.org/document/951537/

    Article  Google Scholar 

  46. Yang J, Wright J, Huang TS, Ma Y (2010) Edge-directed single image super-resolution via cross-resolution sharpening function learning. IEEE Trans Image Process 19(11):2861. doi:10.1109/TIP.2010.2050625. http://ieeexplore.ieee.org/document/5466111/

    Article  MathSciNet  MATH  Google Scholar 

  47. Zeyde R, Elad M, Protter M Image inpainting via sparse representation. (Springer Berlin Heidelberg, 2012), pp 711–730. doi:10.1007/978-3-642-27413-8_47

  48. Zhou Y, Zhao H, Liu T In: Super-resolution from a single image based on local self-similarity. In: 2012 IEEE 11th international conference on signal processing (IEEE, 2012), pp 489–492. doi:10.1109/ICoSP.2012.6491532. http://ieeexplore.ieee.org/document/6491532/

Download references

Acknowledgment

Authors would like to thank Instituto Politécnico Nacional (México) and Consejo Nacional de Ciencia y Tecnología (México) (grant 220347) for their supports in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Alvarez-Ramos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez-Ramos, V., Ponomaryov, V. & Reyes-Reyes, R. Image super-resolution via two coupled dictionaries and sparse representation. Multimed Tools Appl 77, 13487–13511 (2018). https://doi.org/10.1007/s11042-017-4968-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4968-3

Keywords

Navigation