Skip to main content

Advertisement

Log in

Supervised neighborhood regularized collaborative representation for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

How to represent a test sample is very crucial for linear representation based classification. The famous sparse representation focuses on employing linear combination of small samples to represent the query sample. However, the local structure and label information of data are neglected. Recently, locality-constrained collaborative representation (LCCR) has been proposed and integrates a kind of locality-constrained term into the collaborative representation scheme. For each test sample, LCCR mainly considers its neighbors to deal with noise and LCCR is robust to various corruptions. However, the nearby samples may not belong to the same class. To deal with this situation, in this paper, we not only utilize the positive effect of neighbors, but also consider the side effect of neighbors. A novel supervised neighborhood regularized collaborative representation (SNRCR) is proposed, which employs the local structure of data and the label information of neighbors to improve the discriminative capability of the coding vector. The objective function of SNRCR obtains the global optimal solution. Many experiments are conducted over six face data sets and the results show that SNRCR outperforms other algorithms in most case, especially when the size of training data is relatively small. We also analyze the differences between SNRCR and LCCR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711

    Article  Google Scholar 

  2. Chen H, Wang Y (2016) Kernel-based sparse regression with the correntropy-induced loss. Appl Comput Harmonic Anal

  3. Chen H, Pan Z, Li L, Tang Y (2013) Error analysis of coefficient-based regularized algorithm for density-level detection. Neural Comput 25(4):1107

    Article  MathSciNet  Google Scholar 

  4. Chien J, Wu C (2002) Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans Pattern Anal Mach Intell 24(12):1644–1649

    Article  Google Scholar 

  5. Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans Inf Theory 13(1):21–27

    Article  Google Scholar 

  6. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Pattern Recogn 7(2):179–188

    Google Scholar 

  7. Gao S, Tsang I, Ma Y (2014) Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans Image Process 23 (2):623–634

    Article  MathSciNet  Google Scholar 

  8. Georghiades A, Belhumeur P, Kriegman D (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  9. Guo J, Guo Y, Li Y, Wang B, Li M (2015) Locality sensitive discriminative dictionary learning. In: IEEE International conference on image processing (IEEE), pp 1558–1562

  10. Haghiri S, Rabiee H, Soltani-Farani A, Hosseini S, Shadloo M (2014) Locality preserving discriminative dictionary learning. In: IEEE International conference on image processing (IEEE), pp 5242–5246

  11. He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340

    Article  Google Scholar 

  12. He R, Zheng W, Hu B (2011) Maximum correntropy criterion for robust face recognition. IEEE Trans Pattern Anal Mach Intell 33(8):1561–1576

    Article  Google Scholar 

  13. Heisele B, Ho P, Poggio T (2001) Face recognition with support vector machines: global versus component-based approach. In: IEEE International conference on computer vision, vol 2, pp 688–694

  14. Jiang Z, Lin Z, Davis L (2013) Label consistent K-SVD: learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664

    Article  Google Scholar 

  15. Liu B, Shen B, Gui L, Wang Y, Li X, Yan F, Wang Y (2016) Face recognition using class specific dictionary learning for sparse representation and collaborative representation. Neurocomputing 204:198–210

    Article  Google Scholar 

  16. Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. EEE Trans Pattern Anal Mach Intell 32(11):2106–2112

    Article  Google Scholar 

  17. Peng X, Zhang L, Zhang Y, Tan K (2014) Learning locality-constrained collaborative representation for robust face recognition. Pattern Recogn 47(9):2794–2806

    Article  Google Scholar 

  18. Phillips P, Wechsler H, Huang J, Rauss P (1998) The FERET database and evaluation procedure for face-recognition algorithms. Image Vis Comput 16(5):295–306

    Article  Google Scholar 

  19. Phillips P, Flynn P, Scruggs T et al (2005) Overview of the face recognition grand challenge. In: IEEE International conference on computer vision and pattern recognition, vol 1. IEEE, pp 947–954

  20. Piao X, Hu Y, Sun Y, Gao J, Yin B (2016) Block-diagonal sparse representation by learning a linear combination dictionary for recognition, arXiv preprint arXiv:1601.01432

  21. Ramirez I, Sprechmann P, Sapiro G (2010) Classification and clustering via dictionary learning with structured incoherence and shared features. In: IEEE Conference on computer vision and pattern recognition (IEEE), pp 3501–3508

  22. Samaria F, Harter A (1994) Parameterisation of a stochastic model for human face identification. In: Proceedings of IEEE workshop on applications of computer vision, pp 138–142

  23. Sim T, Baker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25:1615–1618

    Article  Google Scholar 

  24. Sun Z, Shang L (2016) A local spectral feature based face recognition approach for the one-sample-per-person problem. Neurocomputing 188:160–166

    Article  Google Scholar 

  25. Sun Y, Liu Q, Tang J, Tao D (2014) Learning discriminative dictionary for group sparse representation. IEEE Trans Image Process 23(9):3816–3828

    Article  MathSciNet  Google Scholar 

  26. Taigman Y, Wolf L, Hassner T et al (2009) Multiple one-shots for utilizing class label information. In: BMVC, pp 1–12

  27. Tan X, Chen S, Zhou Z, Zhang F (2006) Face recognition from a single image per person: a survey. Pattern Recogn 39(9):1725–1745

    Article  Google Scholar 

  28. Tang X, Feng G, Cai J (2014) Weighted group sparse representation for undersampled face recognition. Neurocomputing 145:402–415

    Article  Google Scholar 

  29. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  30. Valmadre J, Zhu Y, Sridharan S, Lucey S (2012) Efficient articulated trajectory reconstruction using dynamic programming and filters. In: Computer vision–ECCV, pp 72–85

  31. Wang S, Fu Y (2015) Locality-constrained discriminative learning and coding. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 17–24

  32. Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: IEEE Conference on computer vision and pattern recognition (IEEE), pp 3360–3367

  33. Wei C, Chao Y, Yeh Y, Wang Y (2013) Locality-sensitive dictionary learning for sparse representation based classification. Pattern Recogn 46(5):1277–1287

    Article  Google Scholar 

  34. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  35. Xu Y, Zhong Z, Yang J, You J, Zhang D (2016) A new discriminative sparse representation method for robust face recognition via. In: L2 Regularization IEEE transactions on neural networks and learning systems

  36. Yang M, Zhang L, Yang J, Zhang D (2010) Metaface learning for sparse representation based face recognition. In: IEEE International conference on image processing, pp 1601–1604

  37. Yang M, Zhang L, Feng X, Zhang D (2011) Fisher discrimination dictionary learning for sparse representation. In: IEEE International conference on computer vision (IEEE), pp 543–550

  38. Yang M, Zhang L, Yang J, Zhang D (2011) Robust sparse coding for face recognition. In: IEEE Conference on computer vision and pattern recognition, pp 625–632

  39. Yang M, Zhang L, Feng X, Zhang D (2014) Sparse representation based fisher discrimination dictionary learning for image classification. Int J Comput Vis 109 (3):209–232

    Article  MathSciNet  Google Scholar 

  40. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: IEEE Conference on computer vision and pattern recognition (IEEE), pp 2691–2698

  41. Zhang L, Yang M, Feng X (2011) Sparse representation or collaborative representation: which helps face recognition? In: IEEE International conference on computer vision (IEEE), pp 471–478

  42. Zhang N, Yang J, Qian J (2012) Component-based global k-NN classifier for small sample size problems. Pattern Recogn Lett 33(13):1689–1694

    Article  Google Scholar 

  43. Zhao W, Chellappa R, Phillips P, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 35(4):399–458

    Article  Google Scholar 

  44. Zheng W, Zou C, Zhao L (2005) Weighted maximum margin discriminant analysis with kernels. Neurocomputing 67:357–362

    Article  Google Scholar 

  45. Zheng M, Bu J, Chen C, Wang C, Zhang L, Qiu G, Cai D (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  MathSciNet  Google Scholar 

  46. Zhu Y, Lucey S (2015) Convolutional sparse coding for trajectory reconstruction. IEEE Trans Pattern Anal Mach Intell 37(3):529–540

    Article  Google Scholar 

  47. Zhu Y, Cox M, Lucey S (2011) 3D motion reconstruction for real-world camera motion. In: IEEE Conference on computer vision and pattern recognition, pp 1-8

  48. Zhu Y, Valmadre J, Lucey S (2012) Camera-less articulated trajectory reconstruction. In: International conference on pattern recognition (ICPR), pp 841-844

  49. Zhu Y, Huang D, De La Torre F et al (2014) Complex non-rigid motion 3d reconstruction by union of subspaces. In: IEEE Conference on computer vision and pattern recognition, pp 1542-1549

  50. Zhu Y, Zhu X, Kim M et al (2016) Early detection of alzheimer’s disease by jointly feature selection and structural support vector machine. In: MICCAI: International conference on medical image computing and computer-assisted intervention, pp 264–272

Download references

Acknowledgements

This work is supported by the grants from the National Natural Science Foundation of China (No. 11601174, No. 11671161), the Fundamental Research Funds for the Central Universities (No. 2662015QC033, No. 2662016PY053, No. 2662016PY019, No. 2662015PY046 and No. 2014PY025) and the National Creative Innovation Plan of College Students of China (No. 201510504079).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chi, H., Xia, H., Tang, X. et al. Supervised neighborhood regularized collaborative representation for face recognition. Multimed Tools Appl 77, 29509–29529 (2018). https://doi.org/10.1007/s11042-017-4851-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4851-2

Keywords

Navigation