Skip to main content
Log in

Local derivative pattern for action recognition in depth images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a new local descriptor for action recognition in depth images using second-order directional Local Derivative Patterns (LDPs). LDP relies on local derivative direction variations to capture local patterns contained in an image region. Our proposed local descriptor combines different directional LDPs computed from three depth maps obtained by representing depth sequences in three orthogonal views and is able to jointly encode the shape and motion cues. Moreover, we suggest the use of Sparse Coding-based Fisher Vector (SCFVC) for encoding local descriptors into a global representation of depth sequences. SCFVC has been proven effective for object recognition but has not gained much attention for action recognition. We perform action recognition using Extreme Learning Machine (ELM). Experimental results on three public benchmark datasets show the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Amor BB, Su J, Srivastava A (2016) Action recognition using Rate-Invariant analysis of skeletal shape trajectories. TPAMI 38(1):1–13

    Article  Google Scholar 

  2. Boiman O, Shechtman E, Irani M (2008) Defense of nearest-neighbor based image classification. In: CVPR, pp 1–8

  3. Breiman L (2001) Random Forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  4. Chaaraoui AA, Padilla-Lopez JR, Florez-Revuelta F (2013) Fusion of skeletal and Silhouette-Based features for human action recognition with RGB-d devices. In: ICCVW, pp 91–97

  5. Chen C, Jafari R, Kehtarnavaz N (2015) Action recognition from depth sequences using depth motion maps-based local binary patterns. In: WACV, pp 1092–1099

  6. Chen C, Liu K, Kehtarnavaz N (2016) Real-time Human Action Recognition Based on Depth Motion Maps. J Real-Time Image Proc 12(1):155–163

    Article  Google Scholar 

  7. Du Y, Wang W, Wang L (2015) Hierarchical recurrent neural network for skeleton based action recognition. In: CVPR, pp 1110–1118

  8. Evangelidis G, Singh G, Horaud R (2014) Skeletal quads: Human action recognition using joint quadruples. In: ICPR, pp 4513–4518

  9. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin, CJ (2008) LIBLINEAR: a library for large linear classification. J Mach Learn Res 9:1871–1874

    MATH  Google Scholar 

  10. Gowayyed MA, Torki M, Hussein ME, El-Saban M (2013) Histogram of oriented displacements (HOD): describing trajectories of human joints for action recognition. In: IJCAI, pp 1351–1357

  11. Huang GB, Chen L (2007) Convex incremental extreme learning machine. Neurocomputing 70(16–18):3056–3062

    Article  Google Scholar 

  12. Huang GB, Chen L (2008) Enhanced random search based incremental extreme learning machine. Neurocomputing 71(16–18):3460–3468

    Article  Google Scholar 

  13. Huang GB, Zhou H, Ding X, Zhang R (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B Cybern 42(2):513–529

    Article  Google Scholar 

  14. Huang GB, Zhu QY, Siew CK (2004) Extreme learning machine: a new learning scheme of feedforward neural networks. In: IEEE international joint conference on neural networks, vol. 2, pp 985–990

  15. Kurakin A, Zhang Z, Liu Z (2012) A Read-Time system for dynamic hand gesture recognition with a depth sensor. In: EUSIPCO, pp 1975–1979

  16. Laptev I, Marszalek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: CVPR, pp 1–8

  17. Li W, Zhang Z, Liu Z (2008) Expandable Data-Driven graphical modeling of human actions based on salient postures. IEEE Transactions on Circuits and Systems for Video Technology 18(11):1499–1510

    Article  Google Scholar 

  18. Li W, Zhang Z, Liu Z (2010) Action recognition based on a bag of 3D points. In: CVPRW, pp 9–14

  19. Liang C, Chen E, Qi L, Guan L (2016) Improving action recognition using collaborative representation of local depth map feature. IEEE Signal Processing Letters 23(9):1241–1245

    Article  Google Scholar 

  20. Liu L, Shen C, Wang L, van den Hengel A, Wang C (2014) Encoding high dimensional local features by sparse coding based fisher vectors. In: NIPS, pp 1143–1151

  21. Luo J, Wang W, Qi H (2013) Group sparsity and geometry constrained dictionary learning for action recognition from depth maps. In: ICCV, pp 1809–1816

  22. Mairal J, Bach F, Ponce J, Sapiro G, Jenatton R, Obozinski G SPAMS: SPArse modeling software, v2.4. http://spams-devel.gforge.inria.fr/downloads.html

  23. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. TPAMI 27(10):1615–1630

    Article  Google Scholar 

  24. Müller M (2007) Information retrieval for music and motion. Springer-VerlagInc, New York

    Book  Google Scholar 

  25. Murray RM, Sastry SS, Zexiang L (1994) A mathematical introduction to robotic manipulation. Crc Press, Inc

  26. Ngo CW, Pong TC, Chin RT (1999) Detection of gradual transitions through temporal slice analysis. In: CVPR, pp 36–41

  27. Ojala T, Pietikainen M, Harwood D (1994) Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In: Proceedings of the 12th IAPR international conference on pattern recognition, vol. 1, pp 582–585

  28. Oreifej O, Liu Z (2013) HON4d: Histogram of oriented 4D normals for activity recognition from depth sequences. In: CVPR, pp 716–723

  29. Padilla-López JR, Chaaraoui AA, Flórez-Revuelta F (2014) A discussion on the validation tests employed to compare human action recognition methods using the msr action3d dataset. CoRR arXiv:1407.7390

  30. Rahmani H, Mian A (2016) 3D action recognition from novel viewpoints. In: CVPR, pp 1506–1515

  31. Sanchez J, Perronnin F, Mensink T, Verbeek J (2013) Image classification with the fisher vector: theory and practice. IJCV 105(3):222–245

    Article  MathSciNet  MATH  Google Scholar 

  32. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117

    Article  Google Scholar 

  33. Song Y, Liu S, Tang J (2015) Describing trajectory of surface patch for human action recognition on RGB and depth videos. IEEE Signal Process Lett 22(4):426–429

    Article  Google Scholar 

  34. Vedaldi A, Fulkerson B (2010) Vlfeat: an open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM international conference on multimedia, pp 1469–1472

  35. Vemulapalli R, Arrate F, Chellappa R (2014) Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR, pp 588–595

  36. Wang C, Wang Y, Yuille AL (2013) An approach to Pose-Based action recognition. In: CVPR, pp 915–922

  37. Wang J, Liu Z, Chorowski J, Chen Z, Wu Y (2012) Robust 3D action recognition with random occupancy patterns. In: ECCV, pp 872–885

  38. Wang J, Liu Z, Wu Y, Yuan J (2012) Mining actionlet ensemble for action recognition with depth cameras. In: CVPR, pp 1290–1297

  39. Yang X, Tian Y (2014) Super normal vector for activity recognition using depth sequences. In: CVPR, pp 804–811

  40. Yang X, Tian YL (2012) EigenJoints-based action recognition using naive-bayes-nearest-neighbor. In: CVPRW, pp 14–19

  41. Yang X, Zhang C, Tian Y (2012) Recognizing Actions Using Depth Motion Maps-based Histograms of Oriented Gradients. In: Proceedings of the 20th ACM international conference on multimedia, pp 1057–1060

  42. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with High-Order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhao G, Pietikainen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. TPAMI 29(6):915–928

    Article  Google Scholar 

  44. Zhu Y, Chen W, Guo G (2013) Fusing spatiotemporal features and joints for 3D action recognition. In: CVPRW, pp 486–491

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuan Son Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, X.S., Nguyen, T.P., Charpillet, F. et al. Local derivative pattern for action recognition in depth images. Multimed Tools Appl 77, 8531–8549 (2018). https://doi.org/10.1007/s11042-017-4749-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4749-z

Keywords

Navigation