Multimedia Tools and Applications

, Volume 77, Issue 7, pp 8419–8440 | Cite as

Alternative patterns of the multidimensional Hilbert curve

Application in image retrieval
  • Patrick FrancoEmail author
  • Giap Nguyen
  • Remy Mullot
  • Jean-Marc Ogier


Locality-preserving (distance preserving-mapping) is a useful property to manage multidimensional data. Close points in space remain -as much as possible- close after mapping on curve. That is why Hilbert space-filling curve is used in many domains and applications. Hilbert curve preserves well locality because from a construction aspect, it is guided by adajacency constraint on points ordering : the curve connects all points of a D-dimensional discrete space, without favoring any direction, under the constrainst that two successive points are separated by an unit distance. Originally defined in 2-D, all existing multidimensional extensions of the Hilbert curve satisfy adjacency by using the RBG pattern (based on Reflected Binary Gray code). The RBG pattern is then duplicated and arranged (geometrical transformations) to build the multidimensional Hilbert curve at a given order. In this paper, we emphasize that there are other patterns that can satisfy the adjacency. A formulation is given, an algorithm to find out solutions is provided and their respective level of locality preservation is estimated through a standard criterion. Results show that some new patterns can carry a comparable levels of locality and sometimes better than RBG. Moreover, selecting the best locality preserving pattern allows one to design, through orders, a new curve with a comparable overall locality preserving refer to Hilbert curve. The contribution of new patterns is experimented through a CBIR (Content-Based Image Retrieval) application. Large-scale image retrieval tests show that exploring the image feature space with an alternative way to the classical Hilbert curve can lead to improved image searching performances.


Space-filling curve Hilbert curve New patterns Locality preserving Image retrieval 


  1. 1.
    Amory A, Sammouda R, Mathkour H, Jomaa R (2012) A content based image retrieval using k-means algorithm. In: IEEE 7th International Conference on Digital Information Management (ICDIM), pp 221–225Google Scholar
  2. 2.
    Armstrong J, Ahmed M, Chau S (2009) A rotation-invariant approach to 2d shape representation using the hilbert curve. In: Springer (ed) Proceedings of the 6th International Conference on Image Analysis and Recognition, pp 594–603Google Scholar
  3. 3.
    Bader M (2012) Space-Filling Curves: An Introduction with Applications in Scientific Computing. Springer Science and Business Media. doi: 10.1007/978-3-642-31046-1
  4. 4.
    Bilenko M, Basu S, Mooney R (2004) Integrating constraints and metric learning in semi-supervised clustering. In: Proceedings of the 21st International Conference on Machine Learning (ICML), pp 81–88Google Scholar
  5. 5.
    Biswas S (2000) Hilbert scan and image compression. In: Proceedings of the 15th International Conference on Pattern Recognition, vol 3, pp 207–210Google Scholar
  6. 6.
    Butz A (1969) Convergence with Hilbert’s space filling curve. J Comput Syst Sci 3(2):128–146MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Butz A (1971) Alternative algorithm for Hilbert’s space-filling curve. IEEE Trans Comput 20(4):424–426zbMATHCrossRefGoogle Scholar
  8. 8.
    Chatzichristofis SA, Zagoris K, Boutalis YS, Papamarkos N (2010) Accurate image retrieval based on compact composite descriptors and relevance feedback information. Int J Pattern Recognit Artif Intell 24:207–244CrossRefGoogle Scholar
  9. 9.
    Chierichetti F, Panconesi A, Raghavan P, Sozio M, Tiberi A, Upfal E (2007) Finding near neighbors through cluster pruning. In: Proceedings of the 26th ACM SIGMOD- SIGACT-SIGART symposium on Principles of Database Systems (PODS), pp 103–112Google Scholar
  10. 10.
    Cox T, Cox M (1994) Multidimensional scalling. Chapman & Hal, LondonGoogle Scholar
  11. 11.
    Doulamis N, Doulamis A (2006) Evaluation of relevance feedback schemes in content-based in retrieval systems. Signal Process Image Commun 21:334–357zbMATHCrossRefGoogle Scholar
  12. 12.
    Faloutsos C, Roseman S (1989) Fractals for secondary key retrieval. In: Proceedings of the 8th ACM SIGACT-SIGMOD-SIGART symposium on Principles of Database Systems (PODS), pp 247–252Google Scholar
  13. 13.
    Guimarães Pedronette DC, S Torres R (2013) Image re-ranking and rank aggregation based on similarity of ranked lists. Pattern Recogn 46(8):2350–2360CrossRefGoogle Scholar
  14. 14.
    Haji-Hashemi M, Mir-Mohammad Sadeghi H, Moghtadai V (2006) Space-filling patch antennas with cpw feed. In: Progress in Electromagnetics Research Symposium. Cambridge, USA, pp 69–73Google Scholar
  15. 15.
    Hamilton CH, Rau-Chaplin A (2008) Compact Hilbert indices: Space-filling curves for domains with unequal side lengths. Inf Process Lett 105(5):155–163MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Hartigan J, Wong M (1979) Algorithm as136: a k-means clustering algorithm. R Stat Soc Ser C 28:100–108zbMATHGoogle Scholar
  17. 17.
    He X, Niyogi P (2003) Locality preserving projection. In: Advances in Neural Information Processing Systems, vol 16. MIT Press, pp 153–160Google Scholar
  18. 18.
    Hilbert D (1891) Ueber die stetige abbildung einer line auf ein flächenstück. Math Ann 38(3):459–460MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Ho J, Lin S, Fann C, Wang Y, Chang R (2012) A novel content based image retrieval system using k-means with feature extraction. In: IEEE International Conference on Systems and Informatics (ICSAI), pp 785–790Google Scholar
  20. 20.
    Hosny KM (2008) Fast computation of accurate zernike moments. J Real-Time Image Proc 3(1-2):97–107CrossRefGoogle Scholar
  21. 21.
    Hue-Ling C, Ye-In C (2005) Neighbor-finding based on space-filling curves. Inf Syst 30:205–226CrossRefGoogle Scholar
  22. 22.
    Jin G, Mellor-Crummey J (2005) Sfcgen: a framework for efficient generation of multi-dimensional space-filling curves by recursion. ACM Trans Math Softw (TOMS) 31:120–148MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jolliffe I (2002) Principal component analysis, 2nd edn. Springer Series in Statistics, SpringerGoogle Scholar
  24. 24.
    Kanungo T, Haralick R, Baird H, Stuezle W (2000) A statistical, nonparametric methodology for document degradation model validation. IEEE Trans Pattern Anal Mach Intell 22(11):1209–1223CrossRefGoogle Scholar
  25. 25.
    Khotanzad A, Hong Y (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497CrossRefGoogle Scholar
  26. 26.
    Kim D, Chung C, Barnard K (2005) Relevance feedback using adaptive clustering for image similarity retrieval. J Syst Softw 78(1):9–23CrossRefGoogle Scholar
  27. 27.
    Kim WY, Kim YS (2000) A region-based shape descriptor using zernike moments. Signal Process Image Commun 16(1-2):95–102CrossRefGoogle Scholar
  28. 28.
    Lawder J, King P (2000) Using space-filling curves for multi-dimensional indexing. In: Advances in databases, vol 1832, pp 20–35Google Scholar
  29. 29.
    Lawder J, King P (2001) Using state diagrams for hilbert curve mappings. Int J Comput Math 78(3):327–342MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Lebesgue H (1904) Leċons sur l’intégration. Gauthier-Villars, PariszbMATHGoogle Scholar
  31. 31.
    Liu P, Jia K, Lv Z (2008) An effective and fast retrieval algorithm for content-based image retrieval. In: IEEE Congress on Image and Signal Processing (CISP’08), vol 2, pp 471–474Google Scholar
  32. 32.
    Liu X (2004) Four alternative patterns of the hilbert curve. Appl Math Comput 147(3):741–752MathSciNetzbMATHGoogle Scholar
  33. 33.
    McVay J, Hoorfar A, Engheta N (2005) Thin absorbers using space-filling-curve high-impedance surfaces. In: IEEE International Symposium on Antennas and Propagation, vol 2A, pp 22–25Google Scholar
  34. 34.
    Mehtre BM, Kankanhalli MS, Lee WF (1997) Shape measures for content based image retrieval: a comparison. Inf Process Manag 33(3):319–337CrossRefGoogle Scholar
  35. 35.
    Mitchison G, Durbin R (1986) Optimal numberings of an n*n array. SIAM Journal on Algebraic Discrete Methods 7(4):571–582MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Mokbel MF, Aref WG (2003) Analysis of multi-dimensional space-filling curves. GeoInformatiqua 7(3):179–209CrossRefGoogle Scholar
  37. 37.
    Moon B, Jagadish H, Faloutsos C, Saltz J (2001) Analysis of the clustering properties of the hilbert space-filling curve. IEEE Trans Knowl Data Eng 13(1):124–141CrossRefGoogle Scholar
  38. 38.
    Müller H, Müller W, McG Squire D, Marchand-Maillet S, Pun T (2001) Performance evaluation in content-based image retrieval: overview and proposal. Pattern Recogn Lett 22:593–601zbMATHCrossRefGoogle Scholar
  39. 39.
    Murthy V, Vamsidhar E, Swarup Kumar J, Sankara Rao P (2010) Content based image retrieval using hierarchical and k-means and clustering techniques. Int J Eng Sci Technol 2(3):209–212Google Scholar
  40. 40.
    Nagthane D (2013) Content based image retrieval system using k-means clustering technique. Int J Comput Appl Inf Technol 3(1):22–29Google Scholar
  41. 41.
    Nguyen G (2013) Space-filling curves and their application in image processing. PhD thesis, University of La Rochelle (France), Laboratoire Informatique Image et Interactions (L3I). HAL Id: tel-01174960Google Scholar
  42. 42.
    Nguyen G, Franco P, Mullot R, Ogier JM (2012) Mapping high dimensional image features onto hilbert curve: applying to fast image retrieval. In: Proceedings of the 21st International Conference on Pattern Recognition. IEEE Computer Society, pp 425–428Google Scholar
  43. 43.
    Novotni M, Klein R (2004) Shape retrieval using 3d zernike descriptors. Comput Aided Des 36(11):1047–1062CrossRefGoogle Scholar
  44. 44.
    Park G, Baek Y, Lee HK (2005) Re-ranking algorithm using post-retrieval clustering for content-based image retrieval. Inf Process Manag 41(2):177–194zbMATHCrossRefGoogle Scholar
  45. 45.
    Peano G (1890) Sur une courbe, qui remplit toute une aire plane. Math Ann 36(1):157–160MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Perez A, Kamata S, Kawaguchi E (1992) Peano scanning of arbitrary size images. In: Proceedings of the International Conference on Pattern Recognition, pp 565–568Google Scholar
  47. 47.
    Sagan H (2012) Space-Filling Curves. Springer Science and Business Media. doi: 10.1007/978-1-4612-0871-6
  48. 48.
    Sergeyev YD, Strongin RG, Lera D (2013) Introduction to Global Optimization Exploiting Space-Filling Curves. Springer Science & Business MediaGoogle Scholar
  49. 49.
    Teague M (1980) Image analysis via the general theory of moments. J Opt Soc Am 70:920–930MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tsai C (2012) Bag-of-words representation in image annotation: a review ISRN Artif Intell, 2012Google Scholar
  51. 51.
    Velho L, Gomes JdM (1991) Digital halftoning with space filling curves. ACM SIGGRAPH Computer Graphics 25(4):81–90CrossRefGoogle Scholar
  52. 52.
    Yasser E, Maher A, Siu-Cheung C, Wegdan A (2007) A view-based 3d object shape representation technique. In: Image Analysis and Recognition, vol 4633. Springer, Berlin Heidelberg, pp 411–422Google Scholar
  53. 53.
    Yasser E, Maher A, Wegdan A, Siu-Cheung C (2009) Shape representation and description using the hilbert curve. Pattern Recogn Lett 30(4):348–358CrossRefGoogle Scholar
  54. 54.
    Ying L, Dengsheng Z, Guojun L, Wei-Ying M (2007) A survey of content-based image retrieval with high-level semantics. Pattern Recogn 40(1):262–282zbMATHCrossRefGoogle Scholar
  55. 55.
    Zhang D, Lu G (2002) Shape-based image retrieval using generic fourier descriptor. Signal Process Image Commun 17(10):825–848CrossRefGoogle Scholar
  56. 56.
    Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1–19CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratoire Informatique, Image, Interaction (L3i)EA 2118- University of La Rochelle (France)La RochelleFrance

Personalised recommendations