Skip to main content
Log in

Transreceiving of encrypted medical image – a cognitive approach

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, there is an increasing demand for efficient and secure transreception of medical images in telemedicine applications. Though a fixed spectrum is allocated to each user, most of the time it remains unused by the concerned user. Cognitive Radio (CR) is a technology that utilizes the unused spectrum efficiently by adopting spectrum sensing concept. This paper proposes an efficient and secure transmission of medical images by adopting CR technology and image encryption technique. Firstly, the novel medical image encryption algorithm is proposed to encrypt the DICOM (Digital Imaging and Communications in Medicine) image effectively. Then, the spectrum sensing technique is carried out via Universal Software Radio Peripheral (USRP) to sense the unused frequency band to transmit the encrypted bio signal. The proposed encryption algorithm combines DNA (Deoxyribo Nucleic Acid) sequence operation and chaotic maps to successfully encrypt the DICOM image pixels. Experimental results are done and various analysis such as Unified Average Changing Intensity (UACI), Number of Pixel Changing Rate (NPCR), entropy estimation and chi-square tests are carried out to validate the sternness of the encryption algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Akyildiz I, Lee WY, Vuran MC, Mohanty S (2008) A survey on spectrum management in cognitive radio networks. IEEE Commun Mag 46:40–48. doi:10.1109/MCOM.2008.4481339

    Article  Google Scholar 

  2. Al-Ayyoub M, Jararweh Y (2016) Virtualization-based cognitive radio networks. J Syst 117:15–29. doi:10.1016/j.jss.2016.02.014

    Google Scholar 

  3. Alsaedi, M. (2016) Colored image encryption and decryption using multi-chaos 2D quadratic strange attractors and matrix transformations. Multimed Tools Appl (2016). doi:10.1007/s11042-016-4206-4

  4. Althunibat S, Wang Q, Granelli F (2016) Flexible channel selection mechanism for cognitive radio based last mile smart grid communications. Ad Hoc Netw 41:47–56. doi:10.1016/j.adhoc.2015.10.008

    Article  Google Scholar 

  5. Alvarez G, Li S (2006) Some basic cryptographic requirements for chaos-based cryptosystems. Int J Bifurc Chaos 16:2129–2151. doi:10.1142/S0218127406015970

    Article  MathSciNet  MATH  Google Scholar 

  6. Belazi A, Abd El-Latif AA, Diaconu A-V, Rhouma R, Belghith S (2017) Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms. Opt Lasers Eng 88:37–50. doi:10.1016/j.optlaseng.2016.07.010

    Article  Google Scholar 

  7. Boriga, R., Dǎscǎlescu, A.C., Diaconu, A.-V. (2014) A new one-dimensional chaotic map and its use in a novel real-time image encryption scheme (2014) advances in multimedia, 2014, art. no. 409586. doi:10.1155/2014/409586

  8. Cedillo-Hernandez M, Garcia-Ugalde F, Nakano-Miyatake M, Perez-Meana H (2013) Robust watermarking method in DFT domain for effective management of medical imaging. Signal, Image Video Process 9:1163–1178. doi:10.1007/s11760-013-0555-x

    Article  Google Scholar 

  9. Diaconu AV (2016) Circular inter-intra pixels bit-level permutation and chaos-based image encryption. Inf Sci 355–356:314–327. doi:10.1016/j.ins.2015.10.027

    Article  Google Scholar 

  10. Dridi M, Bouallegue B, Mtibaa A (2014) Crypto-compression of medical image based on DCT and chaotic system. Global Summit on Computer & Information Technology (GSCIT), Sousse, pp. 1-6. doi:10.1109/GSCIT.2014.6970113

  11. Guesmi R, Farah M, Kachouri A, Samet M (2016) A novel chaos-based image encryption using DNA sequence operation and secure hash algorithm SHA-2. Nonlinear Dyn 83:1123–1136. doi:10.1007/s11071-015-2392-7

    Article  MathSciNet  MATH  Google Scholar 

  12. Heider D, Barnekow A (2007) DNA-based watermarks using the DNA-crypt algorithm. BMC Bioinf 8:176. doi:10.1186/1471-2105-8-176

    Article  Google Scholar 

  13. Jain A, Rajpal N (2015) A robust image encryption algorithm resistant to attacks using DNA and chaotic logistic maps. Multimed Tools Appl 75:5455–5472. doi:10.1007/s11042-015-2515-7

    Article  Google Scholar 

  14. Khan MK, Zhang J (2007) An intelligent fingerprint-biometric image scrambling scheme. Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence Volume 4682 of the series Lecture Notes in Computer Science pp 1141–1151. doi:10.1007/978-3-540-74205-0_118

  15. Khan MK, Zhang J, Tian L (2005) Protecting biometric data for personal identification. Advances in Biometric Person Authentication Volume 3338 of the series Lecture Notes in Computer Science pp 629–638 doi:10.1007/978-3-540-30548-4_72

  16. Khan MK, Zhang J, Alghathbar K (2011) Challenge-response-based biometric image scrambling for secure personal identification. Futur Gener Comput Syst 27(4):411–418. doi:10.1016/j.future.2010.05.019

    Article  Google Scholar 

  17. Kocarev L (2001) Chaos-based cryptography: a brief overview. IEEE Circuits Syst Mag 1:6–21. doi:10.1109/7384.963463

    Article  Google Scholar 

  18. Kulsoom A, Xiao D, Abbas S (2016) An efficient and noise resistive selective image encryption scheme for gray images based on chaotic maps and DNA complementary rules. Multimed Tools Appl 75:1–23. doi:10.1007/s11042-014-2221-x

    Article  Google Scholar 

  19. Leier A, Richter C, Banzhaf W, Rauhe H (2000) Cryptography with DNA binary strands. Biosystems 57:13–22. doi:10.1016/S0303-2647(00)00083-6

    Article  Google Scholar 

  20. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518. doi:10.1109/TIFS.2014.2381872

    Article  Google Scholar 

  21. Li X, Wang L, Yan Y, Liu P (2016) An improvement color image encryption algorithm based on DNA operations and real and complex chaotic systems. Opt - Int J Light Electron Opt 127:2558–2565. doi:10.1016/j.ijleo.2015.11.221

    Article  Google Scholar 

  22. Liao X, Shu C (2015) Reversible data hiding in encrypted images based on absolute mean difference of multiple neighboring pixels. J Vis Commun Image Represent 28(4):21–27. doi:10.1016/j.jvcir.2014.12.007

    Article  Google Scholar 

  23. Liao X, Li K, Yin J (2016) Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform. Multimed Tools Appl (2016). doi:10.1007/s11042-016-3971-4

  24. Lima JB, Madeiro F, Sales FJR (2015) Encryption of medical images based on the cosine number transform. Signal Process Image Commun 35:1–8. doi:10.1016/j.image.2015.03.005

    Article  Google Scholar 

  25. Liu H, Wang X, kadir A (2012) Image encryption using DNA complementary rule and chaotic maps. Appl Soft Comput 12:1457–1466. doi:10.1016/j.asoc.2012.01.016

  26. Liu L, Zhang Q, Wei X (2012) A RGB image encryption algorithm based on DNA encoding and chaos map. Comput Electr Eng 38:1240–1248. doi:10.1016/j.compeleceng.2012.02.007

    Article  Google Scholar 

  27. Liu Y, Wang J, Fan J, Gong L (2016) Image encryption algorithm based on chaotic system and dynamic S-boxes composed of DNA sequences. Multimed Tools Appl 75:4363–4382. doi:10.1007/s11042-015-2479-7

    Article  Google Scholar 

  28. Masuda N, Aihara K (2002) Cryptosystems with discretized chaotic maps. IEEE Trans Circuits Syst I Fundam Theory Appl 49:28–40. doi:10.1109/81.974872

    Article  MathSciNet  MATH  Google Scholar 

  29. Moumen A, Bouye M, Sissaoui H (2015) New secure partial encryption method for medical images using graph coloring problem. Nonlinear Dyn 82:1475–1482. doi:10.1007/s11071-015-2253-4

    Article  MathSciNet  MATH  Google Scholar 

  30. Nazeer M, Nargis B, Malik YM, Kim D-G (2013) A fresnelet-based encryption of medical images using arnold transform. Int J Adv Comput Sci Appl 4:131–140. doi:10.14569/IJACSA.2013.040322

    Google Scholar 

  31. Parvees MYM, Samath JA, Bose BP (2016) Secured medical images - a chaotic pixel scrambling approach. J Med Syst 40:232. doi:10.1007/s10916-016-0611-5

    Article  Google Scholar 

  32. Praveenkumar P, Amirtharajan R, Thenmozhi K, Balaguru Rayappan JB (2015) Medical data sheet in safe havens - a tri-layer cryptic solution. Comput Biol Med 62:264–276. doi:10.1016/j.compbiomed.2015.04.031

    Article  Google Scholar 

  33. Ravichandran D, Praveenkumar P, Balaguru Rayappan JB, Amirtharajan R (2016) Chaos based crossover and mutation for securing DICOM image. Comput Biol Med 72:170–184. doi:10.1016/j.compbiomed.2016.03.020

    Article  Google Scholar 

  34. Rehman AU, Liao XF, Kulsoom A, Abbas SA (2015) Selective encryption for gray images based on chaos and DNA complementary rules. Multimed Tools Appl 74:4655–4677. doi:10.1007/s11042-013-1828-7

    Article  Google Scholar 

  35. Tragos EZ, Zeadally S, Fragkiadakis AG, Siris VA (2013) Spectrum assignment in cognitive radio networks: a comprehensive survey. IEEE Commun Surveys Tuts 15:1108–1135. doi:10.1109/SURV.2012.121112.00047

    Article  Google Scholar 

  36. Troncoso-Pastoriza JR, Katzenbeisser S, Celik M (2007) Privacy preserving error resilient DNA searching through oblivious automata. In Proceedings of the 14th ACM conference on Computer and communications security (CCS '07). ACM, New York, NY, USA, 519–528. doi:10.1145/1315245.1315309

  37. Watson JD, Crick FHC (1953) A structure for deoxyribose nucleic acid. Nature 171:737–738 http://www.nature.com/nature/dna50/watsoncrick2.pdf

    Article  Google Scholar 

  38. Zhang L, Liao X, Wang X (2005) An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24:759–765. doi:10.1016/j.chaos.2004.09.035

    Article  MathSciNet  MATH  Google Scholar 

  39. Zhen P, Zhao G, Min L, Jin X (2016) Chaos-based image encryption scheme combining DNA coding and entropy. Multimed Tools Appl 75:6303–6319. doi:10.1007/s11042-015-2573-x

    Article  Google Scholar 

  40. Zheng Y, Jeon B, Xu D, Wu QMJ, Zhang H (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):961–973. doi:10.3233/IFS-141378

    Google Scholar 

Download references

Acknowledgements

Authors would like to express their sincere thanks to SASTRA University, for the financial support under R&M fund (R&M/0027/SEEE – 010/2012–13) to carry out this research work. Also, we are grateful to Dr. S. Vanoli, Medical Superintendent, Government Hospital, Ariyalur, for his valuable suggestions in carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengarajan Amirtharajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveenkumar, P., Kerthana Devi, N., Ravichandran, D. et al. Transreceiving of encrypted medical image – a cognitive approach. Multimed Tools Appl 77, 8393–8418 (2018). https://doi.org/10.1007/s11042-017-4741-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4741-7

Keywords

Navigation