Multimedia Tools and Applications

, Volume 77, Issue 4, pp 4217–4236 | Cite as

The case analysis on sentiment based ranking of nodes in social media space

  • Meghna Chaudhary
  • Harish Kumar
  • Sakshi Kaushal
  • Arun Kumar Sangaiah
Article
  • 109 Downloads

Abstract

Now-a-days, social network sites have become quite popular for communication in the society. People have entangled their day-to-day activities around social media platforms. Social Networks have allowed the users to share their opinions on different topics. In social media, sentiment analysis is an important character to determine opinions of users. Moreover, user’s can be ranked to determine their relative influence. This paper proposes a methodology to rank the users involving sentiment related parameters such as likes, comments and corresponding likescount. Analysis of users’ comments is carried-out. Weights are assigned to these parameters and scores are calculated for each user. Users are ranked on the basis of scores obtained and compared with existing technique. In order to verify the effectiveness of proposed methodology, data is extracted from a verified Facebook page ‘Panjab University, Chandigarh’. Mean, standard deviation and variance are computed to capture the usefulness of ranks obtained by the proposed method. Results depict that the proposed methodology is better than existing technique since it incorporates several features indicating positive and negative behavior of users. This technique can be used to determine the highly trusted and the most distrusted users in a social media user’s profile. Users with negative scores can be considered for outlier analysis. The proposed methodology can also be extended to work on other social media platforms.

Keywords

Social media Sentiment analysis Ranking Cosine similarity and Cyber Space 

References

  1. 1.
    Cai C, Li L, Zeng D (2016) New words enlightened sentiment analysis in social media. In: IEEE Conference on Intelligence and Security Informatics (ISI), Arizona, pp 202-204Google Scholar
  2. 2.
    Cambria E, Schuller B, Xia Y, Havasi C (2013) New avenues in opinion mining and sentiment analysis. IEEE Intell Syst 28(2):15–21 Retrieved from http://ieeexplore.ieee.org/ CrossRefGoogle Scholar
  3. 3.
    Chai KMA, Ng HT, Chieu HL (2002) Bayesian online classifiers for text classification and filtering. In: Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, Tampere, Pirkanmaa. Association for Computing Machinery, New York, pp 97–104Google Scholar
  4. 4.
    Chen H, Zimbra D (2010) AI and Opinion Mining. IEEE Intell Syst 25(3):74–76 Retrieved from http://ieeexplore.ieee.org/ CrossRefGoogle Scholar
  5. 5.
    Davis D, Figueroa G, Chen Y (2016) SociRank: identifying and ranking prevalent news topics using social media factors. IEEE Trans Syst Man Cybern Syst 1–16. Retrieved from http://ieeexplore.org/
  6. 6.
    Dumais S, Platt J, Heckerman D, Sahami M (1998) Inductive learning algorithms and representations for text categorization. In: Proceedings of the seventh international conference on Information and knowledge management, Washington, DC. Association for Computing Machinery, New York, pp 148–155Google Scholar
  7. 7.
    Eirinaki M, Pisal S, Singh J (2012) Feature-based opinion mining and ranking. J Comput Syst Sci 78:1175–1184 Retrieved from http://www.sciencedirect.com/ MathSciNetCrossRefGoogle Scholar
  8. 8.
    Facebook page http://www.facebook.com. Accessed 29 July 2015Google Scholar
  9. 9.
    Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), Seattle, WA. Association for Computing Machinery, New York, pp 168–177Google Scholar
  10. 10.
    Jain V, Sangaiah AK, Sakhuja S et al (2016) Supplier selection using fuzzy AHP and TOPSIS: a case study in the Indian automotive industry. Neural Computing & Applications, Springer Publishers. doi: 10.1007/s00521-016-2533-z Google Scholar
  11. 11.
    Kamps J (2004) Using WordNet to Measure Semantic Orientation of Adjectives. In: Proceedings of the 4th Annual International Conference on Language Resources and Evaluation, Lisbon, PT, pp 1115–1118. Baton RougeGoogle Scholar
  12. 12.
    Kim S, Hovy E (2006) Extracting opinions, opinion holders, and topics expressed in online news media text. In: Proceedings of the workshop on sentiment and subjectivity in text, Sydney, NSW, pp 1–8. Association for Computational Linguistics, StroudsburgGoogle Scholar
  13. 13.
    Kwon O, Wen Y (2010) An empirical study of the factors affecting social network service use. Comput Hum Behav 26(2):254–263 Retrieved from http://www.sciencedirect.com/ CrossRefGoogle Scholar
  14. 14.
    Li M, Luo L, Miao L, Xue Y, Zhao Z, Wang Z (2016) FriendRank: a personalized approach for tweets ranking in social networks. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)Google Scholar
  15. 15.
    Liang B, Liu Y, Zhang M, Ma S, Ru L, Zhang K (2014) Searching for people to follow in social networks. Expert Syst Appl 41:7455–7465 Retrieved from http://www.sciencedirect.com/ CrossRefGoogle Scholar
  16. 16.
    Liu B (2010) Sentiment Analysis: A Multifaceted Problem. IEEE Intell Syst 25(3):76–80 Retrieved from https://uic.pure.elsevier.com Google Scholar
  17. 17.
    Manning CD, Raghavan P, Schütze H (2008) An Introduction to Information Retrieval. Cambridge University Press, EnglandCrossRefMATHGoogle Scholar
  18. 18.
    Min M, Choi D, Kim J, Lee H (2011) The identification of intimate friends in personal social network. In: International conference on computational aspects of social networks, Salamanca, pp 233–236Google Scholar
  19. 19.
    Mohammadinejad A, Farahbakhsh R, Crespi N (2016) Employing personality feature to rank the influential users in signed networks. In: IEEE International Conferences on Big Data and Cloud Computing (BDCloud), Social Computing and Networking (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-SocialCom-SustainCom), Atlanta, pp. 346–353Google Scholar
  20. 20.
    Ntalianis K, Salem AM (2016) Ranking of news items in rule-stringent social media based on users' importance: a social computing approach. In: IEEE Seventh International Conference on Intelligent Computing and Information Systems (ICICIS), Egypt, pp 27–33Google Scholar
  21. 21.
    Ortega FJ, Troyano JA, Cruz FL, Vallejo CG, Enríquez F (2012) Propagation of trust and distrust for the detection of trolls in a social network. Comput Netw 56:2884–2895 Retrieved from http://www.sciencedirect.com/ CrossRefGoogle Scholar
  22. 22.
    Pang B, Lee L (2005) Seeing stars. Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd annual association for computational linguistics, Ann Arbor, MI, pp 115–124. Association for Computational Linguistics, StroudsburgGoogle Scholar
  23. 23.
    Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine learning techniques. In: Proceedings of the annual conference on empirical methods in natural language processing, Philadelphia, 10: 79–86. Association for Computational Linguistics, StroudsburgGoogle Scholar
  24. 24.
    Reilly CF, Salinas D, Leon DD (2014) Ranking users based on influence in a directional social network. In: International conference on computational science and computational intelligence, Las Vegas 2:237–240Google Scholar
  25. 25.
    Riloff E, Wiebe J (2003) Learning extraction patterns for subjective expressions. In: Proceedings of the conference on empirical methods in natural language processing, Sapporo, HOK, pp 105–112. Association for Computational Linguistics, StroudsburgGoogle Scholar
  26. 26.
    Sangaiah AK, Gopal J, Basu A, Subramaniam PR (2015) An integrated fuzzy DEMATEL, TOPSIS, and ELECTRE approach for evaluating knowledge transfer effectiveness with reference to GSD project outcome. Neural computing and applications, Springer Publishers, Article in Press. doi: 10.1007/s00521-015-2040-7
  27. 27.
    Santidhanyaroj P, Khan TA, Gelowitz CM, Benedicenti L (2014) A sentiment analysis prototype system for social network data. In: IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE), Torono, pp 1–5Google Scholar
  28. 28.
    Sebastiani F (2002) Machine learning in automated text categorization. ACM Comput Surv 34(1):1–47CrossRefGoogle Scholar
  29. 29.
    Smailović J, Kranjc J, Grčar M, Žnidaršič M, Mozetič I (2015) Monitoring the Twitter sentiment during the Bulgarian elections. In: IEEE International Conference onData Science and Advanced Analytics (DSAA), Paris, pp. 1–10Google Scholar
  30. 30.
    Snyder B, Barzilay R (2007) Multiple aspect ranking using the good grief algorithm. In: Proceedings of the annual conference of North American Chapter of the Association for Computational Linguistics, Rochester, pp 300–307Google Scholar
  31. 31.
    Subbian K, Melville P (2011) Supervised rank aggregation for predicting influencers in Twitter. In: IEEE international conference on privacy, security, risk, and trust, and IEEE international conference on social computing, Boston, pp 661–665Google Scholar
  32. 32.
    Turney P (2002) Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews. In: Proceedings of the 40th annual association for computational linguistics, Philadelphia, pp 417–424. Association for Computational Linguistics, StroudsburgGoogle Scholar
  33. 33.
    Xiao X, Chen C, Sangaiah AK, Hu G, Ye R, Jiang Y (2017) CenLocShare: a centralized privacy-preserving location-sharing system for mobile online social networks. Future Generation Computer Systems, Elsevier Publishers. doi: 10.1016/j.future.2017.01.035 Google Scholar
  34. 34.
    Zhang K, Cheng Y, Xie Y, Honbo D, Agrawal A, Palsetia D, Lee K, Liao WK, Choudhary A (2011) SES: sentiment elicitation system for social media data. In: IEEE 11th International Conference on Data Mining Workshops (ICDMW), Vancouver, pp 129–136Google Scholar
  35. 35.
    Zhao Y, Niu K, He Z, Lin J (2013) Text sentiment analysis algorithm optimization & platform development in social network. In: Sixth international symposium on computational intelligence and design, Hangzhou, pp 410–413Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Meghna Chaudhary
    • 1
  • Harish Kumar
    • 1
  • Sakshi Kaushal
    • 1
  • Arun Kumar Sangaiah
    • 2
  1. 1.University Institute of Engineering and Technology, Panjab UniversityChandigarhIndia
  2. 2.School of Computing Science and EngineeringVIT UniversityVelloreIndia

Personalised recommendations