Genuine reversible data hiding technology using compensation for H.264 bitstreams

Article
  • 74 Downloads

Abstract

Reversible data hiding technologies have been considered largely impractical because those are, in most cases, applicable to raw video data rather than prevailing compressed data. Even though, many algorithms have been recently developed in the compressed video domain, most of them cannot guarantee the reversibility of cover video due to the lossy characteristics of video compression standards. We suggest completely practical data hiding scheme for H.264 baseline bitstream by achieving genuine reversibility for both I and P frames. Regardless of the data hiding algorithm, the proposed scheme can increase embedding payload by 66.9% and reduce computational complexity by 93%. Also, a novel compensation based difference expansion method with clever coefficient pairing strategy is proposed as a data hiding algorithm and achieved superior embedding payload vs. image quality performance. The proposed algorithm improves payload by 48.9% on average at almost the same video quality distortion.

Keywords

Reversible watermarking Data hiding Video compression H.264/AVC Compensation 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation(NRF) of Korea funded by the Ministry of Science, ICT & Future Planning (NRF-2015R1C1A1A02037777).

References

  1. 1.
    Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bouchama S, Aliane H, Hamami L (2013) Reversible data hiding scheme for the H. 264/AVC codec 2013 IEEE international conference on information science and applications (ICISA) , pp 1–4CrossRefGoogle Scholar
  3. 3.
    Chang CC, Lin CC, Tseng CS, Tai WL (2007) Reversible hiding in DCT-based compressed images. Inf Sci 177(13):2768–2786CrossRefGoogle Scholar
  4. 4.
    Chen YH, Huang HC, Lin CC (2016) Block-based reversible data hiding with multi-round estimation and difference alteration. Multimed Tool Appl 75 (21):13679–13704Google Scholar
  5. 5.
    Chung KL, Huang YH, Chang PC, Liao HYM (2010) Reversible data hiding-based approach for intra-frame error concealment in h. 264/AVC. IEEE Trans Circuits Syst Video Technol 20(11):1643–1647CrossRefGoogle Scholar
  6. 6.
    Fridrich J, Goljan M, Chen Q, Pathak V (2004) Lossless data embedding with file size preservation Electronic imaging 2004 international society for optics and photonics, pp 354–365Google Scholar
  7. 7.
    Gujjunoori S, Amberker BB (2012) A DCT based reversible data embedding scheme for MPEG-4 video using HVS characteristics ACM proceedings of the 8th Indian conference on computer vision, graphics and image processing, p 74Google Scholar
  8. 8.
    Hong W, Chen TS, Shiu CW (2009) Reversible data hiding for high quality images using modification of prediction errors. J Syst Softw 82(11):1833–1842CrossRefGoogle Scholar
  9. 9.
    Hu Y, Lee HK, Li J (2009) DE-Based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  10. 10.
    Huang HC, Lu YY, Lin J (2016) Ownership protection for progressive image transmission with reversible data hiding and visual secret sharing. Optik-Int J Light Electron Opt 127(15):5950–5960CrossRefGoogle Scholar
  11. 11.
    Hsu CT, Wu JL (1999) Hidden digital watermarks in images. IEEE Trans Image Process 8(1):58–68CrossRefGoogle Scholar
  12. 12.
    Jung SW, Ko SJ (2011) A new histogram modification based reversible data hiding algorithm considering the human visual system. IEEE Signal Process Lett 18 (2):95–98MathSciNetCrossRefGoogle Scholar
  13. 13.
    Kang SU, Hwang HJ, Kim HJ (2012) Reversible watermark using an accurate predictor and sorter based on payload balancing. ETRI J 34(3):410–420CrossRefGoogle Scholar
  14. 14.
    Li R, Wang R (2013) Video error resilience scheme using reversible data hiding technique for intra-frame in H. 264/AVC 3rd international conference on multimedia technology Atlantis Press (ICMT-13)Google Scholar
  15. 15.
    Liu H, Shao F, Huang J (2006) A MPEG-2 video watermarking algorithm with compensation in bit stream Digital rights management. Technologies, Issues, Challenges and Systems, Springer Berlin Heidelberg, pp 123–134CrossRefGoogle Scholar
  16. 16.
    Liu Y, Ju L, Hu M, Ma X, Zhao H (2015) A robust reversible data hiding scheme for h. 264 without distortion drift. Neurocomputing 151:1053–1062CrossRefGoogle Scholar
  17. 17.
    Lu C-S, Chen J-R, Fan K-C (2005) Real-time frame-dependent video watermarking in VLC domain. Signal Process Image Commun 20:624–642CrossRefGoogle Scholar
  18. 18.
    Ma X, Li Z, Tu H, Zhang B (2010) A data hiding algorithm for h. 264/AVC video streams without intra-frame distortion drift. IEEE Trans Circuits Syst Video Technol 20(10):1320–1330CrossRefGoogle Scholar
  19. 19.
    Mitchell J (1992) Digital compression and coding of continuous-tone still images: Requirements and guidelines. ITU-T Recommendation T, 81Google Scholar
  20. 20.
    Mobasseri BG, Berger IIRJ, Marcinak MP, NaikRaikar YJ (2010) Data embedding in JPEG bitstream by code mapping. IEEE Trans Image Process 19 (4):958–966MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mstafa RJ, Elleithy KM (2016) Compressed and raw video steganography techniques: a comprehensive survey and analysis. Multimedia Tools and Applications, pp 1–38Google Scholar
  22. 22.
    Muhammad K, Ahmad J, Rehman NU, Jan Z, Sajjad M (2016) CISSKA-LSB: Color image steganography using stego key-directed adaptive LSB substitution method. Multimedia Tools and Applications, pp 1–30Google Scholar
  23. 23.
    Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362CrossRefGoogle Scholar
  24. 24.
    Qian Z, Zhang X (2012) Lossless data hiding in JPEG bitstream. J Syst Softw 85(2):309–313CrossRefGoogle Scholar
  25. 25.
    Qu X, Kim S, Kim HJ (2015) Reversible watermarking based on compensation. J Electr Eng Technol 10(1):422–428CrossRefGoogle Scholar
  26. 26.
    Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circuits Syst Video Technol 19(7):989–999CrossRefGoogle Scholar
  27. 27.
    Shahid Z, Puech W (2013) A histogram shifting based RDH scheme for H. 264/AVC with controllable drift IS&T/SPIE electronic imaging international society for optics and photonics, pp 86650S–86650SGoogle Scholar
  28. 28.
    Team JV (2003) Advanced video coding for generic audiovisual services. ITU-t Rec H 264:14496–10Google Scholar
  29. 29.
    Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Techn 13(8):890–896CrossRefGoogle Scholar
  30. 30.
    Tourapis AM, Leontaris A, Suhring K, Sullivan G (2009) H.264/14496-10 AVC reference software manual. Doc. JVT-AE010Google Scholar
  31. 31.
    Tsai YY, Tsai DS, Liu CL (2013) Reversible data hiding scheme based on neighboring pixel differences. Digital Signal Process 23(3):919–927MathSciNetCrossRefGoogle Scholar
  32. 32.
    Wang K, Lu ZM, Hu YJ (2013) A high capacity lossless data hiding scheme for JPEG images. J Syst Softw 86(7):1965–1975CrossRefGoogle Scholar
  33. 33.
    Xu D, Wang R, Shi YQ (2014) An improved reversible data hiding-based approach for intra-frame error concealment in h. 264/AVC. J Vis Commun Image Represent 25(2):410–422CrossRefGoogle Scholar
  34. 34.
    Xuan G, Shi YQ, Ni Z, Chai P, Cui X, Tong X (2007) Reversible data hiding for JPEG images based on histogram pairs International conference image analysis and recognition. Springer Berlin Heidelberg, pp 715–727CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceSangmyung UniversitySeoulRepublic of Korea

Personalised recommendations