Skip to main content

Advertisement

Log in

Adaptive top-hat filter based on quantum genetic algorithm for infrared small target detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With the development of infrared technology, infrared small targets detection has attracted great interest of researchers. Top-hat filter is one of widely used methods for detecting infrared small target, and the structure elements have great influence on the performance of detection. The structure elements are desired to be adjusted adaptively. To this end, an adaptive structure elements optimization method based on quantum genetic algorithm (QGA) is introduced, and the convergence of QGA reveals the effectiveness of QGA. Experimental results show that the proposed adaptive top-hat filter based on QGA can achieve more stable infrared small target detection performance compared with the traditional top-hat filter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bae T (2011) Small target detection using bilateral filter and temporal cross product in infrared images. Infrared Phys Technol 54:403–411

    Article  Google Scholar 

  2. Bai X, Zhou F (2010) Analysis of new top-hat transformation and the application for infrared dim small target detection. Pattern Recogn 43(6):2145–2156

    Article  MATH  Google Scholar 

  3. Caefer CE, Silverman J, Mooney JM, Salvo SD, Taylor RW (1998) Temporal filtering for point target detection in staring IR imagery: I. Damped sinusoid filters. Proc SPIE 3373:111–122

    Article  Google Scholar 

  4. Chen CLP, Li H, Wei Y, Xia T, Yan Tang Y (2014) A local contrast method for small infrared target detection. IEEE Trans Geosci Remote Sens 52(1):574–581

    Article  Google Scholar 

  5. Deng L, Zhu H (2015) Moving point target detection based on clutter suppression using spatial temporal local increment coding. Electron Lett 51(8):625–626

    Article  Google Scholar 

  6. Deng H, Sun X, Liu M, Ye C (2016) Infrared small-target detection using multiscale gray difference weighted image entropy. IEEE Trans Aerosp Electron Syst 52(1):60–72

    Article  Google Scholar 

  7. Deshpande S, Er M, Ronda V, Chan P (1999) Max-mean and max-median filters for detection of small-targets. Proc SPIE 3809:74–83

    Article  Google Scholar 

  8. Dong W, Zhang J, Yang D, Liu D (2011) Homogeneous background prediction algorithm for detection of point target. Infrared Phys Technol 54(2):70–74

    Article  Google Scholar 

  9. Gao C, Sang N, Huang R (2014) Biologically inspired scene context for object detection using a single instance. PLoS One 9(5):e98477

    Article  Google Scholar 

  10. Han KH, Kim JH (2000) Genetic quantum algorithm and its application to combinatorial optimization problem. Proc Evol Comput 2:1354–1360

    Google Scholar 

  11. Harvey NR, Marshall S (1994) Using genetic algorithms in the design of morphological filters. In: Mathematical Morphology and Its Applications to Image Processing, pp 53–59

  12. Hilliard CI (2000) Selection of a clutter rejection algorithm for real-time target detection from an airborne platform. Proc SPIE :74–84

  13. Laboudi Z, Chikhi S (2012) Comparison of genetic algorithm and quantum genetic algorithm. Proc Int Arab J Inf Technol 9(3):243–250

    Google Scholar 

  14. Li Y, Lu H, Zhang L, Zhu J, Yang S, Hu X (2012) An automatic image segmentation algorithm based onweighting fuzzy c-means clustering. Soft Computing in Information Communication Technology 1:27–32

  15. Li Y, Liang S, Bai B, Feng D (2014) Detecting and tracking dim small targets in infrared image sequences under complex backgrounds. Multimed Tools Appl 71(3):1179–1199

    Article  Google Scholar 

  16. Li Y, Zhang Y, Yu J, Tan Y, Tian J, Ma J (2016a) A novel spatio-temporal saliency approach for robust DIM moving target detection from airborne infrared image sequences. Inf Sci 369:548–563

    Article  MathSciNet  Google Scholar 

  17. Li Y, Tao C, Tan Y, Shang K, Tian J (2016b) Unsupervised multilayer feature learning for satellite image scene classification. IEEE Geosci Remote Sens Lett 13(2):157–161

    Article  Google Scholar 

  18. Li Y, Lu H, Li J, Li X, Li Y, Serikawa S (2016c) Underwater image de-scattering and classification by deep neural network. Comput Electr Eng 54:68–77

    Article  Google Scholar 

  19. Liu G, Wang F, Liu Z (2016) Infrared aerial small target detection based on digital image processing. Multimedia Tools Appl 1–15. doi:10.1007/s11042-016-3568-y

  20. Lu H, Zhang L, Zhang M, Hu X, Serikawa S (2010) A method for infrared image segment based on sharpfrequency localized contourlet transform and morphology. Proc Int Conf Intelligent Control Inf Process, PART 2 :79–82. doi:10.1109/ICICIP.2010.5564346

  21. Lu H, Li Y, Zhang L, Yang S, Serikawa S (2012) Fast level set segmentation method in medical multisensor images detection. Int J Adv Comput Technol 4(23):475–482

  22. Lu H, Li B, Zhu J, Li Y, Li Y, Xu X, He L (2017) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation 29(6):e3927

    Article  Google Scholar 

  23. Qi S, Ma J, Tao C, Yang C, Tian J (2013) A robust directional saliency-based method for infrared small-target detection under various complex backgrounds. IEEE Geosci Remote Sens Lett 10(3):495–499

    Article  Google Scholar 

  24. Serra J (1982) Image analysis and mathematical morphology. Academic Press, New York

    MATH  Google Scholar 

  25. Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Proc. Annual Symposium on the Foundation of Computer Sciences, pp 20–22

  26. Yang L, Yang J, Yang K (2004) Adaptive detection for infrared small target under sea-sky complex background. Electron Lett 40(17):1083–1085

    Article  Google Scholar 

  27. Zeng M, Li J, Peng Z (2006) The design of top-hat morphological filter and application to infrared target detection. Infrared Phys Technol 48(1):67–76

    Article  Google Scholar 

  28. Zhu H, Zhang T, Deng L (2013) Indirect target detection method in FLIR image sequences. Infrared Phys Technol 60:15–23

    Article  Google Scholar 

Download references

Acknowledgements

This work is sponsored by the National Natural Science Foundation (Grant No. 61501259, 61401228), sponsored by China Postdoctoral Science Foundation (Grant No. 2016 M591891, 2015 M581841), sponsored by Postdoctoral Science Foundation of Jiangsu Province(Grant No.1501019A), sponsored by Natural Science Foundation of Jiangsu Province (Grant No. BK20140874, BK20150864), and sponsored by NUPTSF (Grant No. NY214041, NY215136, NY214145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Zhu, H., Zhou, Q. et al. Adaptive top-hat filter based on quantum genetic algorithm for infrared small target detection. Multimed Tools Appl 77, 10539–10551 (2018). https://doi.org/10.1007/s11042-017-4592-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-4592-2

Keywords

Navigation