Multimedia Tools and Applications

, Volume 77, Issue 3, pp 4047–4064 | Cite as

Computer-aided diagnosis system for colon abnormalities detection in wireless capsule endoscopy images

Article

Abstract

Wireless capsule endoscopy (WCE) is a novel imaging technique that can travel through human body and image the small bowel entirely. Therefore, it has been gradually adopted compared with traditional endoscopies for gastrointestinal diseases. However, the big number of the produced images by a WCE test makes their review exhaustive for the physicians. It is helpful for clinicians if we can develop a computer-aided diagnosis system for the task of identifying the images with potential problems. The aim of this paper is to automatize the process of WCE images abnormalities detection by presenting a new texture extraction scheme for pathological inflammation, polyp, and bleeding regions discrimination in WCE images. A new approach based on local binary pattern variance and discrete wavelet transform is proposed. The new textural features scheme has many advantages, e.g., it detects multi-directional characteristics and overcomes the illuminations changes in WCE images. Intensive experiments are conducted on two datasets constructed from several WCE exams. The promising results make the presented method suitable for abnormalities detection in WCE images.

Keywords

Wireless capsule endoscopy Gastrointestinal tract Discrete wavelet transform (DWT) Local binary pattern (LBP) LBP variance 

Notes

Acknowledgments

We gratefully acknowledge and express our thanks to the National Center for Scientific and technical Research (CNRST) in Rabat for its research grant.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Ahmadv A, Daliri MR (2016) A review on texture analysis methods in biomedical image processing. OMICS J RadiolGoogle Scholar
  2. 2.
    Akansu AN, Haddad RA (2001) Multiresolution signal decomposition: transforms, subbands, and wavelets. Academic PressGoogle Scholar
  3. 3.
    Ameling S, Wirth S, Paulus D, Lacey G, Vilariño F (2009) Texture-based polyp detection in colonoscopy, pp 346–350, http://dblp.uni-trier.de/db/conf/bildmed/bildmed2009.html#AmelingWPLV09
  4. 4.
    Barbosa DJ, Ramos J, Lima CS (2008) Detection of small bowel tumors in capsule endoscopy frames using texture analysis based on the discrete wavelet transform 2008 30th annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 3012–3015Google Scholar
  5. 5.
    Barbosa D J C, Ramos J, Correia J H, Lima C S (2009) Automatic detection of small bowel tumors in capsule endoscopy based on color curvelet covariance statistical texture descriptors Conference proceedings IEEE engineering in medicine and biology society, pp 6683–6686Google Scholar
  6. 6.
    Charisis VS, Hadjileontiadis LJ, Liatsos CN, Mavrogiannis CC, Sergiadis GD (2012) Capsule endoscopy image analysis using texture information from various colour models. Comput Meth Programs Biomed 107 (1):61–74. http://dblp.uni-trier.de/db/journals/cmpb/cmpb107.html#CharisisHLMS12 CrossRefGoogle Scholar
  7. 7.
    Committee AT, Wang A, Banerjee S, Barth BA, Bhat YM, Chauhan S, Gottlieb KT, Konda V, Maple JT, Murad F, Pfau PR, Pleskow DK, Siddiqui UD, Tokar JL, Rodriguez SA (2013) Wireless capsule endoscopy. Gastrointest Endosc 78:805–815. doi: 10.1016/j.gie.2013.06.026 CrossRefGoogle Scholar
  8. 8.
    Cristianini N, Shawe-Taylor J (2000) An introduction to support vector machines : and other kernel-based learning methods. Cambridge University Press, Cambridge, U.K., New York, Melbourne. http://opac.inria.fr/record=b1134197 CrossRefMATHGoogle Scholar
  9. 9.
    DG A, CJ G (2003) Wireless capsule endoscopy. Hosp Physician 405 (5):14–22Google Scholar
  10. 10.
    Ellahyani A, El Ansari M (2016) Mean shift and log-polar transform for road sign detection. Multimedia Tools and Applications, pp 1–19. doi: 10.1007/s11042-016-4207-3
  11. 11.
    Ellahyani A, El Ansari M, El Jaafari I (2016) Traffic sign detection and recognition based on random forests. Appl Soft Comput 46:805–815CrossRefGoogle Scholar
  12. 12.
    Girgis HZ, Mitchell BR, Dassopouios T, Mullin G, Haga G (2010) An intelligent system to detect crohn’s disease inflammation in wireless capsule endoscopy videos ISBI. http://dblp.uni-trier.de/db/conf/isbi/isbi2010.html#GirgisMDMH10. IEEE, pp 1373–1376
  13. 13.
    Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recogn 43 (3):706–719. doi: 10.1016/j.patcog.2009.08.017 CrossRefMATHGoogle Scholar
  14. 14.
    Hafeezallah A, Abu-Bakar S (2016) Crowd counting using statistical features based on curvelet frame change detection. Multimedia Tools and Applications, pp 1–23Google Scholar
  15. 15.
    Haykin S (1998) Neural networks: a comprehensive foundation, 2nd edn. Prentice Hall PTR, Upper Saddle River, NJ, USAMATHGoogle Scholar
  16. 16.
    Iakovidis DK, Koulaouzidis A (2014) Automatic lesion detection in wireless capsule endoscopy - A simple solution for a complex problem 2014 IEEE international conference on image processing, ICIP 2014, Paris, France, October 27-30, 2014. doi: 10.1109/ICIP.2014.7025453, pp 2236–2240Google Scholar
  17. 17.
    Iddan G, Meron G, Glukhovsky A, Swain P (2000) Wireless capsule endoscopy. Nature 405 (6785):405–417CrossRefGoogle Scholar
  18. 18.
    Kodogiannis VS, Boulougoura M, Lygouras JN, Petrounias I (2007) A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images. Neurocomputing 70 (4-6):704–717. doi: 10.1016/j.neucom.2006.10.024 CrossRefGoogle Scholar
  19. 19.
    Kodogiannis VS, Boulougoura M, Wadge E, Lygouras JN (2007) The usage of soft-computing methodologies in interpreting capsule endoscopy. Eng Appl Artif Intell 20 (4):539–553. doi: 10.1016/j.engappai.2006.09.006 CrossRefGoogle Scholar
  20. 20.
    Lam V, Phan S, Le D D, Duong D A, Satoh S (2016) Evaluation of multiple features for violent scenes detection. Multimedia Tools and Applications, pp 1–25Google Scholar
  21. 21.
    Leggett C L, Wang K K (2016) Computer-aided diagnosis in gi endoscopy: looking into the future. Gastrointest Endosc 84 (5):842–844CrossRefGoogle Scholar
  22. 22.
    Li B, Meng M Q H (2009) Computer-based detection of bleeding and ulcer in wireless capsule endoscopy images by chromaticity moments. Compt Biol Med 39 (2):141–147CrossRefGoogle Scholar
  23. 23.
    Li B, Meng MQH (2009) Small bowel tumor detection for wireless capsule endoscopy images using textural features and support vector machine Proceedings of the 2009 IEEE/RSJ international conference on intelligent robots and systems, IROS’09. http://dl.acm.org/citation.cfm?id=1733343.1733454. IEEE Press, Piscataway, NJ, USA, pp 498–503CrossRefGoogle Scholar
  24. 24.
    Li B, Meng MQH (2009c) Texture analysis for ulcer detection in capsule endoscopy images. Image Vis Comput 27 (9):1336–1342. doi: 10.1016/j.imavis.2008.12.003
  25. 25.
    Li B, Meng MQH (2012) Automatic polyp detection for wireless capsule endoscopy images. Expert Syst Appl 39 (12):10,952–10,958. http://dblp.uni-trier.de/db/journals/eswa/eswa39.html#LiM12 CrossRefGoogle Scholar
  26. 26.
    Li B, Meng MQH, Lau JYW (2011) Computer-aided small bowel tumor detection for capsule endoscopy. Artif Intell Med 52 (1):11–16. http://dblp.uni-trier.de/db/journals/artmed/artmed52.html#LiML11 CrossRefGoogle Scholar
  27. 27.
    Li B, Xu G, Zhou R, Wang T (2015) Computer aided wireless capsule endoscopy video segmentation. Med Phys 42:645–652. doi: 10.1118/1.4905164 CrossRefGoogle Scholar
  28. 28.
    Liu G, Yan G, Kuang S, Wang Y (2016) Detection of small bowel tumor based on multi-scale curvelet analysis and fractal technology in capsule endoscopy. Comput Biol Med 70:131–138CrossRefGoogle Scholar
  29. 29.
    Maghsoudi O H, Soltanian-Zadeh H (2013) Detection of abnorMalities in wireless capsule endoscopy frames using local fuzzy patterns 2013 IEEE 20th Iranian Conference on Biomedical Engineering, ICBME 2013, Tehran, Iran, December 18-20, 2013, pp 286–291Google Scholar
  30. 30.
    Mallat S G (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693CrossRefMATHGoogle Scholar
  31. 31.
    Manjunath B S, Ma W Y (1996) Texture features for browsing and retrieval of image data. IEEE Trans Pattern Anal Mach Intell 18 (8):837–842CrossRefGoogle Scholar
  32. 32.
    Mitselos IV, Christodoulou DK, Katsanos KH, Tsianos EV (2015) Role of wireless capsule endoscopy in the follow-up of inflammatory bowel disease. World J Gastrointest Endosc 7:643–651. doi: 10.4253/wjge.v7.i6.643 CrossRefGoogle Scholar
  33. 33.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24 (7):971–987. doi: 10.1109/TPAMI.2002.1017623 CrossRefMATHGoogle Scholar
  34. 34.
    Omidyeganeh M, Ghaemmaghami S, Shirmohammadi S (2013) Application of 3d-wavelet statistics to video analysis. Multimedia Tools Appl 65 (3):441–465CrossRefGoogle Scholar
  35. 35.
    Organization WE (1962) Weo clinical endoscopy atlas. http://www.endoatlas.org/
  36. 36.
    Saurin JC, Beneche N, Chambon C, Pioche M (2016) Challenges and future of wireless capsule endoscopy. Clinical Endoscopy 42:26–29. doi: 10.5946/ce.2016.49.1.26
  37. 37.
    Tourassi GD, Armato SG (2016) Medical imaging 2016: computer-aided diagnosis. In: Society of photo-optical instrumentation engineers (SPIE) conference series, vol 9785Google Scholar
  38. 38.
    Vapnik VN (1998) Statistical learning theory. Wiley-InterscienceGoogle Scholar
  39. 39.
    Wang S, Yang X, Zhang Y, Phillips P, Yang J, Yuan T F (2015) Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 17 (10):6663–6682CrossRefGoogle Scholar
  40. 40.
    Yang G, Zhang Y, Yang J, Ji G, Dong Z, Wang S, Feng C, Wang Q (2015) Automated classification of brain images using wavelet-energy and biogeography-based optimization. Applications, pp 1–17Google Scholar
  41. 41.
    Yuan Y, Wang J, Li B, Meng MQH (2015) Saliency based ulcer detection for wireless capsule endoscopy diagnosis. IEEE Trans Med Imaging 34 (10):2046–2057. http://dblp.uni-trier.de/db/journals/tmi/tmi34.html#YuanWLM15 CrossRefGoogle Scholar
  42. 42.
    Zhang G, Wang W, Shin S, Hruska C B, Son S H (2015) Fourier irregularity index: a new approach to measure tumor mass irregularity in breast mammogram images. Multimedia Tools and Applications 74 (11):3783–3798CrossRefGoogle Scholar
  43. 43.
    Zhang L, Mistry K, Neoh S C, Lim C P (2016) Intelligent facial emotion recognition using moth-firefly optimization. Knowl-Based Syst 111:248–267CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Dong Z, Liu A, Wang S, Ji G, Zhang Z, Yang J (2015) Magnetic resonance brain image classification via stationary wavelet transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Informatics 5 (7):1395–1403CrossRefGoogle Scholar
  45. 45.
    Zhang Y, Dong Z, Phillips P, Wang S, Ji G, Yang J (2015) Exponential wavelet iterative shrinkage thresholding algorithm for compressed sensing magnetic resonance imaging. Inf Sci 322:115–132MathSciNetCrossRefGoogle Scholar
  46. 46.
    Zhang Y D, Wang S H, Liu G, Yang J (2016) Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional fourier transform. Adv Mech Eng 8 (2):1687814016634,243Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LabSIV, Department of Computer Science, Faculty of ScienceIbn Zohr UniversityAgadirMorocco

Personalised recommendations