Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3941–3962 | Cite as

Mammogram classification using dynamic time warping

  • Syed Jamal Safdar Gardezi
  • Ibrahima Faye
  • Jose M. Sanchez Bornot
  • Nidal Kamel
  • Mohammad Hussain
Article
  • 195 Downloads

Abstract

This paper presents a new approach for breast cancer classification using time series analysis. In particular, the region of interest (ROI) in mammogram images is classified as normal or abnormal using dynamic time warping (DTW) as a similarity measure. According to the analogous case in time series analysis, the DTW subsumes Euclidean distance (ED) as a specific case with increased robustness due to DTW flexibility to address local horizontal/vertical deformations. This method is especially attractive for biomedical image analysis and is applied to mammogram classification for the first time in this paper. The current study concludes that varying the size of the ROI images and the restriction on the search criteria for the warping path do not affect the performance because the method produces good classification results with reduced computational complexity. The method is tested on the IRMA and MIAS dataset using the k-nearest neighbour classifier for different k values, which produces an area under curve (AUC) value of 0.9713 for one of the best scenarios.

Keywords

Dynamic time warping Mammogram classification Orientation False alarms Type II error Sensitivity 

Notes

Acknowledgements

This research was supported by the URIF grant 0153AA-B52.

Author’s contributions

SJS, IF and JMSB proposed the idea; participated in implementation and coordinated in optimization of study parameters using matlab. SJSG and JMSB also performed the literature survey and worked on database construction. NK and MH provided valuable suggestions in design and implementation of study and assisted in drafting of the manuscript. All authors have read and approved the final manuscript.

Compliance with ethical standards

Competing interests

The authors declare that they have no competing interests.

References

  1. 1.
    Agrawal P, Vatsa M, Singh R (2014) Saliency based mass detection from screening mammograms. Signal Process 99:29–47CrossRefGoogle Scholar
  2. 2.
    Bailador G, Sanchez-Avila C, Guerra-Casanova J, de Santos Sierra A (2011) Analysis of pattern recognition techniques for in-air signature biometrics. Pattern Recogn 44(10–11):2468–2478. doi: 10.1016/j.patcog.2011.04.010 CrossRefGoogle Scholar
  3. 3.
    Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series, vol 16. KDD workshop, Seattle, pp 359–370Google Scholar
  4. 4.
    Bhanu B, Zhou X (2004) Face recognition from face profile using dynamic time warping. In: Pattern recognition. ICPR 2004. Proceedings of the 17th International Conference on. IEEE, pp 499–502Google Scholar
  5. 5.
    Bodiroza S, Doisy G, Hafner V (2013) Position-invariant, real-time gesture recognition based on dynamic time warping. In: Human–Robot Interaction (HRI), 2013 8th ACM/IEEE International Conference on. IEEE, pp 87–88Google Scholar
  6. 6.
    Brodersen J, Siersma VD (2013) Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med 11(2):106–115. doi: 10.1370/afm.1466 CrossRefGoogle Scholar
  7. 7.
    Celebi S, Aydin AS, Temiz TT, Arici T (2013) Gesture recognition using skeleton data with weighted dynamic time warping. In: Computer vision theory and applications, VisappGoogle Scholar
  8. 8.
    Chen Y-L, Wu S-Y, Wang Y-C (2011) Discovering multi-label temporal patterns in sequence databases. Inf Sci 181(3):398–418. doi: 10.1016/j.ins.2010.09.024 CrossRefGoogle Scholar
  9. 9.
    Dietrich C, Palm G, Riede K, Schwenker F (2004) Classification of bioacoustic time series based on the combination of global and local decisions. Pattern Recogn 37(12):2293–2305CrossRefGoogle Scholar
  10. 10.
    Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1(2):1542–1552CrossRefGoogle Scholar
  11. 11.
    Duarte Y, Nascimento M, Oliveira D. (2014) Classification of mammographic lesion based in Completed Local Binary Pattern and using multiresolution representation. In: Journal of Physics: Conference Series. vol 1. IOP Publishing, p 012127Google Scholar
  12. 12.
    Faundez-Zanuy M (2007) On-line signature recognition based on VQ-DTW. Pattern Recogn 40(3):981–992. doi: 10.1016/j.patcog.2006.06.007 CrossRefMATHGoogle Scholar
  13. 13.
    Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874MathSciNetCrossRefGoogle Scholar
  14. 14.
    Forestier G, Lalys F, Riffaud L, Trelhu B, Jannin P (2012) Classification of surgical processes using dynamic time warping. J Biomed Inform 45(2):255–264. doi: 10.1016/j.jbi.2011.11.002 CrossRefGoogle Scholar
  15. 15.
    Gardezi SJS, Faye I (2015) Fusion of completed local binary pattern features with Curvelet features for mammogram classification. Appl Math 9(6):3037–3048MathSciNetGoogle Scholar
  16. 16.
    Gardezi SJS, Faye I, Eltoukhy MM (2014) Analysis of mammogram images based on texture features of curvelet sub-bands. In: Fifth International Conference on Graphic and Image Processing. Int Soc Optics Photonics, pp 906924-906924-906926Google Scholar
  17. 17.
    Hajian-Tilaki K (2013) Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian J Intern Med 4(2):627Google Scholar
  18. 18.
    Harrison HB, Saenz-Agudelo P, Planes S, Jones GP, Berumen ML (2013) On minimizing assignment errors and the trade-off between false positives and negatives in parentage analysis. Mol Ecol 22(23):5738–5742. doi: 10.1111/mec.12527 CrossRefGoogle Scholar
  19. 19.
    International Agency for Cancer Research (IARC) (2013) Latest world cancer statistics: global cancer burden rises to 14.1 million new cases in 2012: marked increase in breast cancers must be addressed. World Health Organisation (WHO), LyonGoogle Scholar
  20. 20.
    Itakura F (1975) Minimum prediction residual principle applied to speech recognition. IEEE Trans Acoust Speech Signal Process 23(1):67–72CrossRefGoogle Scholar
  21. 21.
    Keogh E, Ratanamahatana CA (2005) Exact indexing of dynamic time warping. Knowl Inf Syst 7(3):358–386. doi: 10.1007/s10115-004-0154-9 CrossRefGoogle Scholar
  22. 22.
    Kumar R, Indrayan A (2011) Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48(4):277–287CrossRefGoogle Scholar
  23. 23.
    Lee AJT, Chen Y-A, Ip W-C (2009) Mining frequent trajectory patterns in spatial–temporal databases. Inf Sci 179(13):2218–2231. doi: 10.1016/j.ins.2009.02.016 CrossRefMATHGoogle Scholar
  24. 24.
    Legrand B, Chang CS, Ong SH, Neo S-Y, Palanisamy N (2008) Chromosome classification using dynamic time warping. Pattern Recogn Lett 29(3):215–222. doi: 10.1016/j.patrec.2007.09.017 CrossRefGoogle Scholar
  25. 25.
    Lemire D (2009) Faster retrieval with a two-pass dynamic-time-warping lower bound. Pattern Recogn 42(9):2169–2180CrossRefMATHGoogle Scholar
  26. 26.
    Liao TW (2005) Clustering of time series data—a survey. Pattern Recogn 38(11):1857–1874CrossRefMATHGoogle Scholar
  27. 27.
    Martens R, Claesen L (1996) On-line signature verification by dynamic time-warping. In: Pattern recognition, Proceedings of the 13th International Conference on. IEEE, pp 38–42Google Scholar
  28. 28.
    Michaelson J, Satija S, Moore R, Weber G, Halpern E, Garland A, Kopans DB, Hughes K (2003) Estimates of the sizes at which breast cancers become detectable on mammographic and clinical grounds. J Women’s Imaging 5:3–10CrossRefGoogle Scholar
  29. 29.
    Mugavin ME (2008) Multidimensional scaling: a brief overview. Nurs Res 57(1):64–68. doi: 10.1097/1001.NNR.0000280659.0000288760.0000280657c CrossRefGoogle Scholar
  30. 30.
    Niennattrakul V, Ratanamahatana CA (2009) Learning DTW global constraint for time series classification. arXiv preprint arXiv:09030041Google Scholar
  31. 31.
    Oliveira JE, Gueld MO, Araújo AdA, Ott B, Deserno TM (2008) Toward a standard reference database for computer-aided mammography. In: Medical imaging. International Society for Optics and Photonics, pp 69151Y-69151Y-69159Google Scholar
  32. 32.
    Oliveira JEE, Gueld MO, de A. Araújo A, Ott B, Deserno TM (2008) Toward a standard reference database for computer-aided mammography. pp 69151Y-69151Y-69159Google Scholar
  33. 33.
    Oliver A, Lladó X, Freixenet J, Martí J (2007) False positive reduction in mammographic mass detection using local binary patterns. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007. Springer, pp 286–293Google Scholar
  34. 34.
    Petitjean F, Ketterlin A, Gançarski P (2011) A global averaging method for dynamic time warping, with applications to clustering. Pattern Recogn 44(3):678–693CrossRefMATHGoogle Scholar
  35. 35.
    Pratiwi M, Harefa J, Nanda S (2015) Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network. Procedia Comput Sci 59:83–91CrossRefGoogle Scholar
  36. 36.
    Ratanamahatana CA, Keogh E (2005) Three myths about dynamic time warping data mining. In. Proc of the 5th SIAM Int. Conf. on Data Mining, SDMGoogle Scholar
  37. 37.
    Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26(1):43–49CrossRefMATHGoogle Scholar
  38. 38.
    Salvador S, Chan P (2004) FastDTW: Toward accurate dynamic time warping in linear time and space. In: KDD workshop on mining temporal and sequential data. CiteseerGoogle Scholar
  39. 39.
    Salz T, Richman AR, Brewer NT (2010) Meta-analyses of the effect of false-positive mammograms on generic and specific psychosocial outcomes. Psycho-Oncology 19(10):1026–1034CrossRefGoogle Scholar
  40. 40.
    Skutkova H, Vitek M, Babula P, Kizek R, Provaznik I (2013) Classification of genomic signals using dynamic time warping. BMC Bioinforma 14(10):1–7CrossRefGoogle Scholar
  41. 41.
    Suckling JSA, Betal D, Cerneaz N, Dance DR, Kok S-L, Parker J, Ricketts I, Savage J, Stamatakis E, Taylor P (1994) The mammographic image analysis society digital mammogram database exerpta medica. Int Congr Ser 1069:375–378Google Scholar
  42. 42.
    Tai S-C, Chen Z-S, Tsai W-T (2014) An automatic mass detection system in mammograms based on complex texture features. IEEE J Biomed Health Inform 18(2):618–627CrossRefGoogle Scholar
  43. 43.
    Toennies KD (2012) Guide to medical image analysis: methods and algorithms. Springer, New YorkCrossRefGoogle Scholar
  44. 44.
    Vaidehi K, Subashini T (2015) Automatic characterization of benign and malignant masses in mammography. Procedia Comput Sci 46:1762–1769CrossRefGoogle Scholar
  45. 45.
    Wang Y, Shi H, Ma S (2011) A new approach to the detection of lesions in mammography using fuzzy clustering. J Int Med Res 39(6):2256–2263CrossRefGoogle Scholar
  46. 46.
    Wasserstein RL, Lazar NA (2016) The ASA’s statement on p-values: context, process, and purpose. Am Stat. doi: 10.1080/00031305.2016.1154108 MathSciNetGoogle Scholar
  47. 47.
    Wickelmaier F (2003) An introduction to MDS: sound quality research unit. Aalborg University, AalborgGoogle Scholar
  48. 48.
    Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd international conference on Machine learning. ACM, pp 1033–1040Google Scholar
  49. 49.
    Zhang Y-D, Wang S-H, Liu G, Yang J (2016) Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional Fourier transform. Adv Mech Eng 8(2). doi: 10.1177/1687814016634243

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Syed Jamal Safdar Gardezi
    • 1
    • 2
  • Ibrahima Faye
    • 1
    • 2
  • Jose M. Sanchez Bornot
    • 3
  • Nidal Kamel
    • 1
    • 4
  • Mohammad Hussain
    • 5
  1. 1.Centre for Intelligent Signal and Imaging Research (CISIR)Universiti Teknologi PetronasSeri IskanadarMalaysia
  2. 2.Department of Fundamental and Applied SciencesUniversiti Teknologi PETRONASSeri IskanadarMalaysia
  3. 3.University of UlsterLondonderryUK
  4. 4.Department of Electrical and Electronics EngineeringUniversiti Teknologi PETRONASSeri IskanadarMalaysia
  5. 5.Department of Computer Science, College of Computer and Information SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations