Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3919–3940 | Cite as

Segmentation of pectoral muscle using the adaptive gamma corrections

  • Syed Jamal Safdar Gardezi
  • Faouzi Adjed
  • Ibrahima Faye
  • Nidal Kamel
  • Mohamed Meselhy Eltoukhy
Article
  • 180 Downloads

Abstract

Accurate segregation of pectoral muscles is very crucial in breast cancer detection. Pectoral segmentation is a challenging task due to heterogeneous tissues densities, neighborhood complexities and breast shape variabilities. This paper presents an adaptive gamma correction method for pectoral suppression in mammograms. The proposed algorithm is adaptive to variations in shape, density of tissues and the curvature of pectoral boundary i.e. straight line or curved pectoral boundary. The method utilizes the morphological information of mammograms to discriminate the breast parenchyma from the rest of breast region. The adaptive gamma corrections enhance the mammograms according to tissues densities and provide a separation boundary between breast region and pectoral parenchymal. The method is tested on three types of tissues densities present in MIAS dataset i.e. Fatty, Fatty-glandular and Dense tissues. The goodness of segmentation is measured using jaccard similarity index between the ground truth and segmented regions. The proposed methods successfully detected 98.45 % of the pectoral regions and have an overall 92.79 % jaccard similarity index with the ground truth. Moreover, evaluation by experts also confirms good performance of the proposed method.

Keywords

Breast cancer Pectoral suppression Edge detection Adaptive gamma correction Interpolation 

Notes

Acknowledgments

The work is supported by URIF grant 0153AA-B52.

The authors are thankful to Virginie Briantais, Radiologist at Jean Villar Clinic, 33520 Bruges, France & Dr Fakhreddine Ababsa, image processing Expert, Evry University, 91020 Evry, France.

References

  1. 1.
    Birdwell RL, Bandodkar P, Ikeda DM (2005) Computer-aided detection with screening mammography in a university hospital setting 1. Radiology 236(2):451–457CrossRefGoogle Scholar
  2. 2.
    Boyd N, Byng J, Jong R, Fishell E, Little L, Miller A, Lockwood G, Tritchler D, Yaffe MJ (1995) Quantitative classification of mammographic densities and breast cancer risk: results from the canadian national breast screening study. J Nat Cancer Inst 87(9):670–675CrossRefGoogle Scholar
  3. 3.
    Camilus KS, Govindan V, Sathidevi P (2010) Computer-aided identification of the pectoral muscle in digitized mammograms. J Digit Imag 23(5):562–580CrossRefGoogle Scholar
  4. 4.
    Ciatto S, Del Turco MR, Risso G, Catarzi S, Bonardi R, Viterbo V, Gnutti P, Guglielmoni B, Pinelli L, Pandiscia A et al (2003) Comparison of standard reading and computer aided detection (cad) on a national proficiency test of screening mammography. Eur J Radiol 45(2):135–138CrossRefGoogle Scholar
  5. 5.
    Dense B, Dense C (2013) Autodensity: an automated method to measure mammographic breast density that predicts breast cancer risk and screening outcomesGoogle Scholar
  6. 6.
    Doi K (2007) Computer-aided diagnosis in medical imaging: historical review, current status and future potential. Comput Med Imag Graph 31(4):198–211CrossRefGoogle Scholar
  7. 7.
    Duarte M, Alvarenga A, Azevedo C, Infantosi A, Pereira W (2012) Estimating the pectoral muscle and the nipple positions in mammographies using morphological filters. In: XXIII Congresso Brasileiro em Engenharia Biomédica, vol 52Google Scholar
  8. 8.
    El-Zaart A (2010) Expectation–maximization technique for fibro-glandular discs detection in mammography images. Comput Biol Med 40(4):392–401CrossRefGoogle Scholar
  9. 9.
    Fenton JJ, Taplin SH, Carney PA, Abraham L, Sickles EA, D’Orsi C, Berns EA, Cutter G, Hendrick RE, Barlow WE et al (2007) Influence of computer-aided detection on performance of screening mammography. New England J Med 356(14):1399–1409CrossRefGoogle Scholar
  10. 10.
    Galdran A, Picón A, Garrote E, Pardo D (2015) Pectoral muscle segmentation in mammograms based on cartoon-texture decomposition. In: Pattern recognition and image analysis. Springer, pp 587–594Google Scholar
  11. 11.
    Ganesan K, Acharya UR, Chua KC, Min LC, Abraham KT (2013) Pectoral muscle segmentation: a review. Comput Methods Programs Biomed 110(1):48–57CrossRefGoogle Scholar
  12. 12.
    Ge M, Mainprize JG, Mawdsley GE, Yaffe MJ (2014) Segmenting pectoralis muscle on digital mammograms by a markov random field-maximum a posteriori model. J Med Imag 1(3):034,503–034,503CrossRefGoogle Scholar
  13. 13.
    Hacking D, Pacifci S Craniocaudal view. https://radiopaedia.org/articles/craniocaudal-view. Accession date 15.11.2016
  14. 14.
    Hacking D, Pacifci S Mediolateral view. https://radiopaedia.org/articles/mediolateral-oblique-view. Accession date 15.11.2016
  15. 15.
    He W, Juette A, Denton ER, Oliver A, Martí R, Zwiggelaar R (2015) A review on automatic mammographic density and parenchymal segmentation. Int J Breast CancerGoogle Scholar
  16. 16.
    Keller B, Nathan D, Wang Y, Zheng Y, Gee J, Conant E, Kontos D (2011) Adaptive multi-cluster fuzzy c-means segmentation of breast parenchymal tissue in digital mammography. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 562–569Google Scholar
  17. 17.
    Kwok SM, Chandrasekhar R, Attikiouzel Y, Rickard M T (2004) Automatic pectoral muscle segmentation on mediolateral oblique view mammograms. IEEE Trans Med Imag 23(9):1129–1140CrossRefGoogle Scholar
  18. 18.
    Li Y, Chen H, Yang Y, Yang N (2013) Pectoral muscle segmentation in mammograms based on homogenous texture and intensity deviation. Pattern Recogn 46(3):681–691CrossRefGoogle Scholar
  19. 19.
    Liberman L, Menell JH (2002) Breast imaging reporting and data system (bi-rads). Radiol Clin North Amer 40(3):409–430CrossRefGoogle Scholar
  20. 20.
    Lu LJW, Nishino TK, Khamapirad T, Grady JJ, Leonard MH, Brunder DG (2007) Computing mammographic density from a multiple regression model constructed with image-acquisition parameters from a full-field digital mammographic unit. Phys Med Biol 52(16):4905CrossRefGoogle Scholar
  21. 21.
    Matsubara T, Yamazaki D, Kato M, Hara T, Fujita H, Iwase T, Endo T (2001) An automated classification scheme for mammograms based on amount and distribution of fibroglandular breast tissue density. In: International congress series, vol 1230. Elsevier, pp 545–552Google Scholar
  22. 22.
    Mustra M, Grgic M (2013) Robust automatic breast and pectoral muscle segmentation from scanned mammograms. Signal Process 93(10):2817–2827CrossRefGoogle Scholar
  23. 23.
    Oliver A, Freixenet J, Marti R, Pont J, Perez E, Denton ER, Zwiggelaar R (2008) A novel breast tissue density classification methodology. IEEE Trans Inform Technol Biomed 12(1):55–65CrossRefGoogle Scholar
  24. 24.
    Olsén C, Mukhdoomi A (2007) Automatic segmentation of fibroglandular tissue. In: Image analysis. Springer, pp 679–688Google Scholar
  25. 25.
    Raba D, Oliver A, Martí J, Peracaula M, Espunya J (2005) Breast segmentation with pectoral muscle suppression on digital mammograms. In: Iberian conference on pattern recognition and image analysis. Springer, pp 471–478Google Scholar
  26. 26.
    Society AC (2015) Global cancer facts & figures, 3rd edn. http://www.cancer.org/acs/groups/content/research/documents/document/acspc-044738.pdf
  27. 27.
    Sreedevi S, Sherly E (2015) A novel approach for removal of pectoral muscles in digital mammogram. Procedia Comput Sci 46:1724–1731CrossRefGoogle Scholar
  28. 28.
    Suckling J, Parker J, Dance D, Astley S, Hutt I, Boggis C, Ricketts I, Stamatakis E, Cerneaz N, Kok S et al (1994) The mammographic image analysis society digital mammogram database. In: Exerpta Medica. International congress series, vol 1069, pp 375–378Google Scholar
  29. 29.
    Wirth MA (2006) Performance evaluation of cade algorithms in mammography. Recent Adv Breast Imag Mammograph Comput-Aided Diag Breast Cancer:640–671Google Scholar
  30. 30.
    Zhang Y, Wang S, Sun P, Phillips P (2015) Pathological brain detection based on wavelet entropy and hu moment invariants. Bio-Med Mater Eng 26(s1):S1283–S1290CrossRefGoogle Scholar
  31. 31.
    Zhang YD, Wang SH, Liu G, Yang J (2016) Computer-aided diagnosis of abnormal breasts in mammogram images by weighted-type fractional fourier transform. Adv Mech Eng 8(2):1687814016634,243Google Scholar
  32. 32.
    Zhou C, Chan HP, Petrick N, Helvie MA, Goodsitt MM, Sahiner B, Hadjiiski LM (2001) Computerized image analysis: estimation of breast density on mammograms. Med Phys 28(6):1056–1069CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Syed Jamal Safdar Gardezi
    • 1
  • Faouzi Adjed
    • 1
    • 2
  • Ibrahima Faye
    • 1
  • Nidal Kamel
    • 1
  • Mohamed Meselhy Eltoukhy
    • 3
  1. 1.Center for Intelligent Signals and Imaging Research, Department of Fundamental and Applied SciencesUniversity Tecknologi PETRONASBandar Seri IskandarMalaysia
  2. 2.Laboratoire IBISC EA 4526Université D’Evry Val d’Essonne91020France
  3. 3.Computer Science Department, Faculty of Computers, InformaticsSuez Canal UniversityIsmailiaEgypt

Personalised recommendations