Skip to main content
Log in

Visual comfort prediction for stereoscopic image using stereoscopic visual saliency

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Perceptually salient regions of stereoscopic images significantly affect visual comfort (VC). In this paper, we propose a new objective approach for predicting VC of stereoscopic images according to visual saliency. The proposed approach includes two stages. The first stage involves the extraction of foreground saliency and depth contrast from a disparity map to generate a depth saliency map, which in turn is combined with 2D saliency to obtain a stereoscopic visual saliency map. The second stage involves the extraction of saliency-weighted VC features, and feeding them into a prediction metric to produce VC scores of the stereoscopic images. We demonstrate the effectiveness of the proposed approach compared with the conventional prediction methods on the IVY Lab database, with performance gain ranging from 0.016 to 0.198 in terms of correlation coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bando T, Lijima A, Yano S (2012) Visual fatigue caused by stereoscopic images and the search for the requirement to prevent them: a review. J Display 33(2):76–83

    Article  Google Scholar 

  2. Banitalebi-Dehkordi A, Nasiopoulos E, Pourazad MT, Nasiopoulos P (2016) Benchmark three- dimensional eye-tracking dataset for visual saliency prediction on stereoscopic three-dimensional video. J Electron Imaging 25(1):1–20

    Article  Google Scholar 

  3. Chang CC, Lin CJ (2006) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):389–396

    Google Scholar 

  4. Cheng MM, Zhang GX, Mitra NJ et al (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):409–416

    Article  Google Scholar 

  5. Choi J, Kim D, Ham B et al (2010) Visual fatigue evaluation and enhancement for 2D-plus-depth video. In: Proc of IEEE international conference on image processing (ICIP), Hongkong, pp 2981–2984

  6. Ee RV, Bank MS, Backus BT (2001) An analysis of binocular slant contrast. Perception 28(9):1121–1145

    Article  Google Scholar 

  7. Ee RV, Erkelens CJ (2001) Anisotropy in Werner’s binocular depth contrast effect. Vis Res 36(15):2253–2262

    Google Scholar 

  8. Felzenszwalb PF, Huttenlocher DP (2004) Efficient graph-based image segmentation. Int J Comput Vis 59(2):167–181

    Article  Google Scholar 

  9. Ghimire D, Lee J (2011) Nonlinear transfer function-based local approach for color image enhancement. IEEE Trans Consum Electron 57(2):858–865

    Article  Google Scholar 

  10. Gottschalk PG, Dunn JR (2005) The five-parameter logistic: a characterization and comparison with the four-parameter logistic. Anal Biochem 343(1):54–65

    Article  Google Scholar 

  11. Guo C, Zhang L (2010) A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression. IEEE Trans Image Process 19(1):185–188

    Article  MATH  MathSciNet  Google Scholar 

  12. Haigh SM, Barningham L, Berntsen M et al (2013) Discomfort and the cortical haemodynamic response to coloured gratings. Vis Res 89(5):46–53

    Google Scholar 

  13. Harel J, Koch C, Perona P (2007) Graph-based visual saliency. In: Proc of Advances in Neural Information Processing Systems, pp 545–552

  14. Hou X, Zhang L (2007) Saliency detection: a spectral residual approach. In: Proc of IEEE conference on Computer Vision & Pattern Recognition (CVPR), Minneapolis, USA, pp 1–8

  15. Jiang G, Zhou J, Yu M et al (2015) Binocular vision based objective quality assessment method for stereoscopic images. Multimed Tools Appl 74(18):8197–8218

    Article  Google Scholar 

  16. Jung Y, Sohn h, Lee S, Ro Y (2012) IVY Lab Stereoscopic Image Database [Online]. Available: http://ivylab.kaist.ac.kr/demo/3DVCA/3DVCA.htm

  17. Jung YJ, Sohn, Lee S, Park H (2013) Predicting visual discomfort of stereoscopic images using human attention model. IEEE Trans Circ Syst Video Technol 23(12):2077–2082

    Article  Google Scholar 

  18. Jung C, Wang S (2015) Visual comfort assessment in stereoscopic 3D images using salient object disparity. Electron Lett 51(6):482–484

    Article  Google Scholar 

  19. Kim D, Sohn K (2011) Visual fatigue prediction for stereoscopic image. IEEE Trans Circ Syst Video Technol 21(2):231–236

    Article  Google Scholar 

  20. Lambooij M, IJsseltstejin WA, Heynderickx I (2012) Visual discomfort of 3D-TV: assessment methods and modeling. Displays 32(4):209–218

    Article  Google Scholar 

  21. Lina J, Selim O, Peter K (2009) Influence of disparity on fixation and saccades in free viewing of natural scenes. J Vis 9(1):74–76

    Google Scholar 

  22. Niu Y, Geng Y, Li X, Liu F (2012) Leveraging stereopsis for saliency analysis. In: 25th IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2012), Rhode Island, pp 454–461

  23. Oh C, Ham B, Choi S et al (2015) Visual fatigue relaxation for stereoscopic video via nonlinear disparity remapping. IEEE Trans Broadcast 61(2):142–153

    Article  Google Scholar 

  24. Otsu N (1979) A threshold selection method from gray-scale histograms. IEEE Trans Smc 9:62–66

    Google Scholar 

  25. Park J, Lee S, Bovik AC (2014) 3D visual discomfort prediction: vergence, foveation, and the physiological optics of accommodation. IEEE J Sel Top Sign Process 8(3):415–427

    Article  Google Scholar 

  26. Park J, Oh H, Lee S et al (2015) 3D visual discomfort predictor: analysis of horizontal disparity and neural activity statistics. IEEE Trans Image Process 24(3):1101–1114

    Article  MathSciNet  Google Scholar 

  27. Paschos G (2001) Perceptually uniform color spaces for color texture analysis: an empirical evaluation. IEEE Trans Image Process 10(6):932–937

    Article  MATH  Google Scholar 

  28. Shao F, Lin W, Gu S et al (2013) Perceptual full-reference quality assessment of stereoscopic images by considering binocular visual characteristics. IEEE Trans Image Process 22(5):1940–1953

    Article  MathSciNet  MATH  Google Scholar 

  29. Sohn H, Jung YJ, Lee S, Ro YM (2013) Predicting visual discomfort using object size and disparity information in stereoscopic images. IEEE Trans Broadcast 59(1):28–37

    Article  Google Scholar 

  30. Tanimoto M, Fujii T, Suzuki K (2009) Depth estimation reference software (DERS)5.0, ISO/IEC JTCI/SC29/WG11 M16923

  31. Vapnik V (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  32. Wang J, Dasilva MP, Lecallet P et al (2013) Computational model of stereoscopic 3D visual saliency. IEEE Trans Image Process 22(6):2151–2165

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang Y, Jiang G, Yu M (2010) Stereoscopic visual attention model for 3D video. Advances in Multimedia Modeling, Berlin, Germany: Springer-verlag, pp 324–324

  34. Zhang L, Tong M, Marks T et al (2008) SUN: a Bayesian framework for saliency using natural statistics. J Vis 8(7):1–20

    Article  Google Scholar 

  35. Zhaoqing P, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  36. Zilly F, Kluger J, Kauff P (2011) Production rules for stereo acquisition. Proc IEEE 99(4):590–606

    Article  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous reviewers whose insightful comments have helped improve the paper. This work was supported in part by Natural Science Foundation of China (NSFC) (Grant Nos. 61401132 and 61471348), in part by Zhejiang Natural Science Funds (Grant No. LY17F020027), in part by Guangdong Natural Science Funds for Distinguished Young Scholar (Grant No. 2016A030306022) and in part by National High Technology Research and Development Program of China (Grant No. 2014AA01A302)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., He, Y., Zhang, S. et al. Visual comfort prediction for stereoscopic image using stereoscopic visual saliency. Multimed Tools Appl 76, 23499–23516 (2017). https://doi.org/10.1007/s11042-016-4126-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4126-3

Keywords

Navigation