Advertisement

Multimedia Tools and Applications

, Volume 77, Issue 3, pp 3795–3811 | Cite as

Unsupervised multi-manifold linear differential projection(UMLDP) for face recognition

  • Zhangjing Yang
  • Minghua Wan
  • Tianming Zhan
  • Zhihui Lai
  • Limin Luo
  • Pu Huang
  • Jincheng Zhang
Article
  • 147 Downloads

Abstract

A novel efficient algorithm called unsupervised multi-manifold linear differential projection(UMLDP) is proposed to overcome the drawbacks of existing unsupervised linear differential projection(ULDP) for face recognition. Firstly, the multi-manifold local neighborhood graph and the largest global variance is constructed respectively. Next, we calculate a low dimensional manifold embedded in high-dimensional space through the multi-objective optimization. This mapping can not only get the low-dimensional manifolds embedded in a high-dimensional space but also maintain the local and the global structural information effectively. Finally, experimental results validate the effectiveness of the proposed algorithm on the ORL, Yale and AR face databases.

Keywords

Face recognition Feature extraction Multi-manifold Unsupervised linear differential projection (ULDP) 

Notes

Acknowledgments

This work is supported by the National Natural Science Fund of China (Grant Nos. 61503195, 61462064, 61203243,61402231, 61603192 and 61272077), the Natural Science Fund of Jiangsu Province(Grant No. BK20161580), the University Natural Science Fund of JiangSu Province, China (Grant No.15KJB520018, 16KJB520020 and 12KJA63001).

References

  1. 1.
    Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041CrossRefMATHGoogle Scholar
  2. 2.
    Bartlett MS, Lades HM, Sejnowski TJ (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464CrossRefGoogle Scholar
  3. 3.
    Gu B, Sheng VS, Tay KY, Romano W, Li S (2014) Incremental support vector learning for ordinal regression. IEEE Trans Neural Netw Learn Syst 26(7):1403–1416MathSciNetCrossRefGoogle Scholar
  4. 4.
    He XF, Yan SC, Hu Y et al (2005) Face Recognition using Laplacian faces. IEEE Trans Pattern Anal Mach Intell 27(3):328–340CrossRefGoogle Scholar
  5. 5.
    Lai Z, Wong WK, Yang J et al (2016) Approximate orthogonal sparse embedding for dimensionality reduction. IEEE Trans Neural Netw Learn Syst 27(4):723–735MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lai ZH, Xu Y, Chen QC et al (2014) Multi-linear sparse principal component analysis. IEEE Trans Neural Netw Learn Syst 25(10):1942–1950CrossRefGoogle Scholar
  7. 7.
    Lai ZH, Xu Y, Jin Z et al (2014) Human gait recognition via sparse discriminant projection learning. IEEE Trans Circuits Syst Video Technol 24(10):1651–1662CrossRefGoogle Scholar
  8. 8.
    Li H, Jiang T, Zhang K (2006) Efficient and robust feature extraction by maximum margin criterion. IEEE Trans Neural Netw 17(1):157–165CrossRefGoogle Scholar
  9. 9.
    Lu ZH, Lu SY, Liu G, Zhang YD et al (2016) A pathological brain detection system based on radial basis function neural network. J Med Imaging Health Inform 6:1218–1222CrossRefGoogle Scholar
  10. 10.
    Lu J, Tan YP, Wang G (2013) Discriminative multi-manifold analysis for face recognition from a single training sample per person. IEEE Trans Pattern Anal Mach Intell 35(1):39–51CrossRefGoogle Scholar
  11. 11.
    Ma XH, Tan YQ (2014) Face recognition based on discriminant sparsity preserving embedding. Acta Automat Sin 40(1):73–82MATHGoogle Scholar
  12. 12.
    Nixon M, Aguado A (2008) Feature extraction and image processing, 2nd edn. Academic Press, Cambridge, pp 385–398Google Scholar
  13. 13.
    Roweis ST, Saul LK (2000) Nonlinear dimensional reduction by locally linear embedding. Science 290(550):2323–2326CrossRefGoogle Scholar
  14. 14.
    Turk M, Pentland A (1991) Eigen faces for recognition. J Cogn Neurosci 3(1):71–86CrossRefGoogle Scholar
  15. 15.
    Wan MH, Lai ZH, Jin Z (2011) Locally minimizing embedding and globally maximizing variance: unsupervised linear difference projection for dimensionality reduction. Neural Process Lett 33(3):267–282CrossRefGoogle Scholar
  16. 16.
    Wan MH, Li M, Yang GW et al (2014) Feature extraction using two-dimensional maximum embedding difference. Inf Sci 274:55–69CrossRefGoogle Scholar
  17. 17.
    Wang SH, Yang M, Du SD et al (2016) Wavelet entropy and directed acyclic graph support vector machine for detection of patients with unilateral hearing loss in MRI scanning. Front Comput Neurosci. doi: 10.3389/fncom.2016.00106 Google Scholar
  18. 18.
    Wen X, Shao L, Xue Y, Fang W (2015) A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406CrossRefGoogle Scholar
  19. 19.
    Wolf L (2011) HassnerT, Taigman Y. Effective unconstrained face recognition by combining multiple descriptors and learned background statistics. IEEE Trans Pattern Anal Mach Intell 33(10):1978–1990CrossRefGoogle Scholar
  20. 20.
    Xia J, Chanussot J, Du P et al (2015) Spectral–spatial classification for hyperspectral data using rotation forests with local feature extraction and Markov random fields. IEEE Trans Geosci Remote Sens 53(5):2532–2546CrossRefGoogle Scholar
  21. 21.
    Yang W, Sun C, Zhang L (2010) Face recognition using a multi-manifold discriminant analysis method. In: Proceedings of IEEE International Conference on Pattern Recognition (ICPR), 527–530Google Scholar
  22. 22.
    Yang W, Sun C, Zhang L (2011) A multi-manifold discriminant analysis method for image feature extraction. Pattern Recogn 44(8):1649–1657CrossRefMATHGoogle Scholar
  23. 23.
    Yang X, Wu W, Qing L et al (2009) Image feature extraction and matching technology. Opt Precis Eng 9:33–33Google Scholar
  24. 24.
    Yang J, Zhang D, Yang JY et al (2007) Globally maximizing, locally minimizing: unsupervised discriminant projection with applications to face and palm biometrics. IEEE Trans Pattern Anal Mach Intell 29(4):650–664MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yang J, Zhang D, Yang JY (2004) Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137CrossRefGoogle Scholar
  26. 26.
    Yu H, Yang J (2001) A direct LDA algorithm for high-dimensional data-with application to face recognition. Pattern Recogn 34(10):2067–2070CrossRefMATHGoogle Scholar
  27. 27.
    Yuan C, Sun X, Rui L (2016) Fingerprint liveness detection based on multi-scale LPQ and PCA. China Commun 13(7):60–65CrossRefGoogle Scholar
  28. 28.
    Zhang YD, Chen XQ, Zhan TM et al (2016) Fractal dimension estimation for developing pathological brain detection system based on minkowski-bouligand method. IEEE Access 4:5937–5947CrossRefGoogle Scholar
  29. 29.
    Zhang BC, Gao YS, Zhao SQ et al (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Zhang YD, Lu SY, Zhou XX et al (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simulation 92(9):861–871CrossRefGoogle Scholar
  31. 31.
    Zhang YD, Wu XY, Lu SY et al (2016) Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation 92(9):873–885CrossRefGoogle Scholar
  32. 32.
    Zhang P, You X, Ou W et al (2016) Sparse discriminative multi-manifold embedding for one-sample face identification. Pattern Recogn 52:249–259CrossRefGoogle Scholar
  33. 33.
    Zheng Y, Byeungwoo J, Xu D et al (2015) Image segmentation by generalized hierarchical fuzzy C-means algorithm. J Intell Fuzzy Syst 28(2):4024–4028Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Zhangjing Yang
    • 1
    • 2
    • 3
    • 4
  • Minghua Wan
    • 2
    • 3
  • Tianming Zhan
    • 2
  • Zhihui Lai
    • 3
  • Limin Luo
    • 1
  • Pu Huang
    • 5
  • Jincheng Zhang
    • 2
  1. 1.School of Computer Science and EngineeringSoutheast UniversityNanjingChina
  2. 2.School of TechnologyNanjing Audit UniversityNanjingChina
  3. 3.College of Computer Science and Software EngineeringShenzhen UniversityShenzhenChina
  4. 4.Fujian Provincial Key Laboratory of Information Processing and Intelligent ControlFuzhouChina
  5. 5.School of Computer Science and TechnologyNanjing University of Posts and TelecommunicationsNanjingChina

Personalised recommendations