Skip to main content
Log in

Adaptive residual-based distributed compressed sensing for soft video multicasting over wireless networks

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Recently, multicasting of video signals has become a useful technology in wireless networks, in which the main challenge is to scalably serve multiple receivers that have different channel characteristics. In this paper, we propose an adaptive residual-based distributed compressed-sensing scheme for soft video multicast (ARDCS-cast). At the encoder, we first adaptively determine if a block in a non-reference frame should be measured directly or predictively during compressed-sensing. The resulting adaptive measurements from non-reference frames are then packeted together with the measurements of the reference frames. We further derive the optimal power allocation scheme for the measurements from each frame within each packet. The packets are then transmitted over the wireless channel. At the decoder, the receivers with different channel characteristics obtain different numbers of packets and reconstruct videos with different quality. Experimental results show that the proposed ARDCS-cast is more effective than the state-of-the-art SoftCast-2D, SoftCast-3D and DCS-cast schemes in both unicast and multicast scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Baron D, Wakin MB, Duarte MF et al (2012) Distributed compressed sensing[J]. Preprint 22(10):2729–2732

    Google Scholar 

  2. Bougher B (2015) Introduction to compressed sensing [J]. Lead Edge 34(10):1256–1257

    Article  Google Scholar 

  3. Carmi AY, Mihaylova LS, Godsill SJ (2014) Introduction to Compressed Sensing and Sparse Filtering [M]. Compressed Sensing and Sparse Filtering. Springer, Berlin Heidelberg, pp 1–23

    MATH  Google Scholar 

  4. Do TT, Chen Y, Nguyen DT et al (2009) Distributed compressed video sensing[C]. Information Sciences and Systems, 2009. Ciss 2009. Conference on. IEEE, pp 1393–1396

  5. Edward A (2016) Exciting projects for PHY and MAC layers of IEEE 802.11 standards [J]. IEEE Veh Technol Mag 11(2):79–81

    Article  Google Scholar 

  6. Etoh M, Yoshimura T (2005) Advances in wireless video delivery. Proc IEEE 93(1):111–122

    Article  Google Scholar 

  7. Fan C, Wang L, Liu P et al (2015) Compressed sensing based remote sensing image reconstruction via employing similarities of reference images[J]. Multimed Tools Appl 1–25

  8. Fan X, Wu F, Zhao D et al (2013) Distributed wireless visual communication with power distortion optimization [J]. IEEE Trans Circ Syst Video Technol 23(6):1040–1053

    Article  Google Scholar 

  9. Fan X, Xiong R, Wu F et al (2012) WaveCast: wavelet based wireless video broadcast using lossy transmission[C].Visual Communications and Image Processing. IEEE 1–6

  10. Fan X, Xiong R, Zhao D et al (2015) Layered soft video broadcast for heterogeneous receivers [J]. Circ Syst Video Technol IEEE Trans 25(11):1

    Article  Google Scholar 

  11. Garrido-Cantos R, Cock JD, Martínez JL et al (2016) H.264/AVC-to-SVC temporal video transcoder for video broadcasting in wireless networks [J]. Multimed Tools Appl 75(1):497–525

    Article  Google Scholar 

  12. Hanzo L, Streit J, Cherriman PJ (2001) Wireless video communications [J]. Gibson

  13. Jakubczak S, Katabi D (2010) SoftCast: one-size-fits-all wireless video[J]. Acm Sigcomm Comput Commun Rev 40(4):449–450

    Article  Google Scholar 

  14. Jakubczak S, Katabi D (2011) A cross-layer design for scalable mobile video[J]. Assoc Comput Mach 289–300

  15. Katabi D, Rahul H, Jakubczak S (2009) SoftCast: one video to serve all wireless receivers [J]

  16. Lee J, Kang K (2015) SVC-aware selective repetition for robust streaming of scalable video [J]. Wirel Netw 21(1):115–126

    Article  Google Scholar 

  17. Li C, Jiang H, Wilford P et al (2011) Video coding using compressive sensing for wireless communications[J]. Wirel Commun Netw Conf IEEE 34(17):2077–2082

    Google Scholar 

  18. Liang J, Mao C (2016) Distributed compressive sensing in heterogeneous sensor network [J]. Signal Process 126:96–102

    Article  Google Scholar 

  19. Liu XL, Hu W, Luo C et al (2014) Compressive image broadcasting in MIMO systems with receiver antenna heterogeneity [J]. Signal Process Image Commun 29(3):361–374

    Article  Google Scholar 

  20. Lorenz DA, Pfetsch ME, Tillmann AM (2015) Solving basis pursuit [J]. ACM Trans Math Softw 41(2):1–29

    Article  Google Scholar 

  21. Lu G (2007) Block compressed sensing of natural images[C]. Int Conf Digit Sign Process 403–406

  22. Mun S, Fowler JE (2011) Residual reconstruction for block-based compressed sensing of video[C]. Data Compression Conference 183–192

  23. Mun S, James EF (2009) Block compressed sensing of images using directional transforms. Proceedings of IEEE Int. Conf. Image Processing, Cairo, Egypt, pp 3021–3024

  24. Pudlewski S, Melodia T, Prasanna A (2012) Compressed-sensing-enabled video streaming for wireless multimedia sensor networks[J]. IEEE Trans Mob Comput 11(99):1

    Google Scholar 

  25. Reimers UH (2006) DVB-the family of international standards for digital video broadcasting [J]. Proc IEEE 94(1):173–182

    Article  Google Scholar 

  26. Schenkel M B, Luo C, Frossard P et al (2010) Compressed sensing based video multicast [J]. Proc SPIE - Int Soc Opt Eng 7744

  27. Tropp JA, Gilbert AC (2014) Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  28. Wang A, Wu Q, Ma X et al (2015) A wireless video multicasting scheme based on multi-scale compressed sensing [J]. J Adv Sign Process 2015(1):1–11

    Article  Google Scholar 

  29. Wang A, Zeng B, Chen H (2014) Wireless multicasting of video signals based on distributed compressed sensing[J]. Signal Process Image Commun 29(5):599–606

    Article  Google Scholar 

  30. Xiang S, Cai L (2011) Scalable video coding with compressive sensing for wireless videocast[C]. Communications, IEEE International Conference on. IEEE, pp 1–5

  31. Xiong R, Liu H, Ma S et al (2014) G-CAST: gradient based image SoftCast for perception-friendly wireless visual communication[C]. 133–142

  32. Xiong R, Wu F, Xu J et al (2016) Analysis of decorrelation transform gain for uncoded wireless image and video communication [J]. IEEE Trans Image Process 25(4):1820–1833

    MathSciNet  Google Scholar 

  33. Yu L, Li H, Li W (2014) Wireless scalable video coding using a hybrid digital-analog scheme[J]. IEEE Trans Circ Syst Video Technol 24(2):331–345

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported in part by National Natural Science Foundation of China (No. 61272262 and No. 61210006), The Program of “One hundred Talented People” of Shanxi Province, Research Project Supported by Shanxi Scholarship Council of China (2014-056), Program for New Century Excellent Talent in Universities (NCET-12-1037), International Cooperative Program of Shanxi Province (No. 2015081015), Scientific and Technological project of Shanxi Province (2015031003-2), and National Science Foundation for Young Scientists of Shanxi Province, China (2014021021-2)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wang, A., Wang, H. et al. Adaptive residual-based distributed compressed sensing for soft video multicasting over wireless networks. Multimed Tools Appl 76, 15587–15606 (2017). https://doi.org/10.1007/s11042-016-3859-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3859-3

Keywords

Navigation