Skip to main content
Log in

Gourd pyrography art simulating based on non-photorealistic rendering

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Non-photorealistic rendering (NPR) is a field in computer science which can create effective illustrations and appealing artistic imagery. Some researchers have proposed NPR methods to simulate different artistic illustrations. However, simulating the new art styles remains extremely challenging. National pyrography is a very famous artistic work in China, and few algorithms have been put forward to illustrate this style. Some exist rendering methods can not demonstrate the main characters of the real pyrography, and the rendering speed is time-consuming using texture synthesis technique. This paper proposes a non-photorealistic rendering technique that automatically generates a gourd pyrography style from a 2D photograph. Similar to the existing exemplar-based methods, an input natural image is regarded as the foreground image, and an input gourd image is taken as the background image. To avoid time-consuming methods like texture synthesis or analogy, this paper simulates character of real pyrography through image abstraction and enhancement from the foreground image. The foreground image will be deformed using equilateral triangle mesh to match the gourd image and mapped to this background image. Experimental results demonstrate the effectiveness of our methods in producing gourd pyrography stylistic illustrations. Meanwhile, the proposed method is simple, fast, and easy to implement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Anjyo K, Hiramitsu K (2003) Stylized Highlights for Cartoon Rendering and Animation. IEEE Comput Graph Appl 23(4):54–61

    Article  Google Scholar 

  2. Aubry M, Paris S, Samuel WH, Jan K, Fredo D (2014) Fast Local Laplacian Filters: Theory and Applications. ACM Trans Graph 33(5):1935–1946

    Article  Google Scholar 

  3. Capell S, Green S, Curless B, Duchamp T, Popovic Z (2002) Interactive Skeleton-Driven Dynamic Deformations. ACM Trans Graph 21(3):586–593

    Article  Google Scholar 

  4. Curtis C. J., Anderson S. E., Seims J. E., et al., (1997) Computer-Generated Watercolor. Siggraph 421-430, ACM Press/Addison-Wesley Publishing Co., New York

  5. Farbman Z., Fattal R., Lischinski D., Szeliski R., (2008) Edge-preserving Decompositions for Multi-scale Tone and Detail Manipulation. ACM Siggraph 1–10, ACM, New York

  6. Fu SJ, Ruan QQ, Wang WQ, Mu CP (2008) Region-based Anisotropic Diffusion with Soft Shock Filter for Adaptive Image Enhancement. Chin J Electron 18(1):56–59

    Google Scholar 

  7. Gao H, Tang D (2006) New Generating Method of Crayon Drawing Style. Comput Eng Appl 47(32):177–179

    Google Scholar 

  8. Gooch A., Gooch B., Shirley P., Cohen E., (1998) A Non-photorealistic Lighting Model for Automatic Technical Illustration. Siggraph, 447-452, ACM, New York

  9. Grabli S., Turquin E., Durand F., Sillion F. X., (2010) Programmable Rendering of Line Drawing From 3d Scenes. ACM Trans Graph, 29(2), 18:1-18:20.

  10. Han XW, Tan L, Wang K, Xie S (2011) Heritance and Development of Jingzhou Pyrography. J Yangtze University 34(11):9–12

    Google Scholar 

  11. He KM, Sun J, Tang XO (2013) Guided Image Filter. IEEE Trans Pattern Anal Mach Intel 35(6):1397–1409

    Article  Google Scholar 

  12. Hertzmann A., (1998) Painterly Rendering with Curved Brush Strokes of Multiple Sizes. Siggraph 453-460, ACM, New York

  13. Igarashi T, Moscovich T, Hughes JF, As-Rigid-as-Possible Shape Manipulation SIGGRAPH (2005) Transactions on. Graphics, 2005 24(3):1134–1141

    Google Scholar 

  14. Kang H, Lee S (2008) Shape-simplifying Image Abstraction. Comput Graph Forum 27(7):1773–1780

    Article  Google Scholar 

  15. Kang H., Lee S., Chui C. K. (2007) Coherent line drawing. ACM Symposium on Non-Photorealistic Animation and Rendering, 43-50, ACM, New York

  16. Kang H, Lee S, Chui CK (2009) Flow-based Image Abstraction. IEEE Trans Vis Comput Graph 15(1):62–76

    Article  Google Scholar 

  17. Kim Y, Yu J, Yu X, Lee S (2008) Line-art Illustration of Dynamic and Specular Surfaces. ACM Trans Graph 27(5):1–10

    Article  Google Scholar 

  18. Kuwahara M, Hachimura K, Eiho S, Kinoshita M (1976) Digital Processing of Biomedical Images. Plenum Press, New York:187–203

  19. Kyprianidis JE, Kang H, Dollner J (2009) Image and Video Abstraction by Anisotropic Kuwahara Filtering. Pac Graph 28(7):1955–1963

    Google Scholar 

  20. Larussi E, Bommes D, Bouseau A (2015) BendFields: Regularized Curvature Fields from Rough Concept Sketches. ACM Trans Graph 34(3):1–16

    Google Scholar 

  21. Lewis J.P., Cordner M., Fong N., (2000) Pose Space Deformation: A Unified Approach to Shape Interpolation and Skeleton-driven Deformation. Siggraph 165–172, ACM Press/Addison-Wesley Publishing Co., New York

  22. Lu C. W., Xu L., Jia J.Y., (2012) Combining Sketch and Tone for Pencil Drawing Production. Int Symp Non-Photorealistic Animat Rendering, 2012:65-73, Eurographics Association Aire-la-Ville, Switzerland

  23. Maccracken R, Joy KI (1996) Free-form Deformations with Lattices of Arbitrary Topology. ACM SIGGRAPH Comput Graph 1996:181–189

    Google Scholar 

  24. Orzan A., Bousseau A., Barla P., Thollot J., (2007) Structure-preserving Manipulation of Photographs. Symposium on Non-photorealistic Animation and Rendering, 103–110, ACM, New York

  25. Papari G, Petkov N, Campisi P (2007) Artistic Edge and Corner Enhancing Smoothing. IEEE Trans Image Process 16(10):2449–2462

    Article  MathSciNet  Google Scholar 

  26. Perona P, Malik J (1991) Scale-space and Edge Detection Using Anisotropic Diffusion. Transactions on Pattern Analysis and Machine Intelligence, Washington, pp. 629–640

    Google Scholar 

  27. Sederberg T, Parry S (2010) Free-form Deformation of Solid Geometric Models. ACM Siggraph Comput Graph 20(4):151–160

    Article  Google Scholar 

  28. Seiller N, Singhal N, Park IK (2010) Object Oriented Framework for Real-time Image Processing on GPU. Multimedia Tools Applic 70(3):2347–2368

    Article  Google Scholar 

  29. Shi Y. J., Xu D., (2012) 2D Shape Manipulation Using Equilateral Triangle Mesh. 2012 Fourth International Conference on IEEE Digital Home, Guangzhou, 432–437

  30. Son M., Kang H., Lee Y., Lee S. (2007) Abstract Line Drawings from 2d Images. Pacific Conference on Computer Graphics and Applications, 333-342, IEEE, Maui

  31. Song YB, Bao LC, Yang QX, Yang MH (2014) Real-Time Exemplar-Based Face Sketch Synthesis. Computer Vision ECCV. Lect Notes Comput Sci 8694:800–813

    Article  Google Scholar 

  32. Tomasi C., Manduchi R., (1998) Bilateral Filtering for Gray and Color Images. IEEE International Conference on Computer Vision, 839–846, IEEE, Bombay

  33. Wang XS, Xu D (2015) Interactive Digital Synthesis of Yunnan Out-of-Print Woodcuts. J Image Graph 20(7):937–944

    Google Scholar 

  34. Wang D, Zhou SS (2010) Computer System Simulation for Gourd Pyrography Painting. J Comput Appl 30(9):2473–2478

    Google Scholar 

  35. Wang D, Zhou SS, Sang XS (2010) Simulation for Pyrography Style Painting Based on Texture Transfer. J Syst Simul 22(12):2929–2933

    Google Scholar 

  36. Winnemöller H., Olsen S. C., Gooch B., (2006) Real-time Video Abstraction. ACM Siggraph 1221–1226, ACM, New York

  37. Yan HB, Hu S, Martin MR (2006) Skeleton-Based Shape Deformation Using Simplex Transformations. Adv Comput Graph 4035:66–77

    Article  Google Scholar 

  38. Yang Y, Wang HM, Zhang J (2011) Generating Half-dry Stroke Texture for Cursive Style Calligraphy with Markov Random Field. Comput Eng Des 32(2):732–737

    Google Scholar 

  39. Yin LW, Hua Z, et al. (2001) Artistic Image Generation by Deviation Mapping. Int J Image Graph 1(4):565–574

    Article  Google Scholar 

  40. Yu YT, Xu D (2015) Research on Batik Crack Rendering Algorithm. J Graph 36(2):159–164

    Google Scholar 

  41. Zhang ZT, Wu JQ, Yu K (2010) Chinese Calligraphy Creation in 3D Virtual Environment. J Comput-aided Des Comput Graph 22(6):1010–1015

    Google Scholar 

Download references

Acknowledgments

This research was funded by the grants (No.61462093, 61163019, 61271361) from the Research Natural Science Foundation of China, the Research Foundation of Yunnan Province (No.2014FA021, 2014FB113), the Research Foundation of New Teacher Fund for Doctor Station, the Ministry of Education (No.20125301120008), the Research Foundation of the Educational Department of Yunnan Province (No. 2015Z012, 2015Y225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, W., Xu, D., Yue, K. et al. Gourd pyrography art simulating based on non-photorealistic rendering. Multimed Tools Appl 76, 14559–14579 (2017). https://doi.org/10.1007/s11042-016-3801-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3801-8

Keywords

Navigation