Skip to main content
Log in

Rate control for HEVC based on spatio-temporal context and motion complexity

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Rate control plays a crucial role in video coding. Existing rate control methods for high efficiency video coding standard (HEVC) hardly take advantage of spatio-temporal context information when updating model parameters, resulting in inaccurate computation of the Lagrange multiplier and quantization parameter (QP). Meanwhile, these methods fail to consider the motion complexity of a basic unit (BU). Therefore, a large mismatch may exist between the allocated bits and actually encoded bits. In this paper, we propose an effective rate control scheme for HEVC at the BU layer to exploit both the spatio-temporal context and motion complexity. Firstly, the actually used Lagrange multiplier and generated bits of the highly correlated coded BUs in the spatio-temporal context are carefully weighted to update the model parameters. Secondly, the allocated bits for a BU are adjusted based on its motion complexity. Thus, an improved Lagrange multiplier is more accurate in minimizing the difference between the target bits and actually generated bits. Experimental results show that our proposed method outperforms the current scheme in HM with negligible complexity increase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bossen F (2012) Common test conditions and software reference configurations. JCTVC-J1100, 10-th JCTVC meeting, Stockholm, Sweden, July. 2012

  2. Bross B et al (2013) High efficiency video coding (HEVC) text specification draft 10. JCTVC-L1003, 12-th JCTVC meeting, Geneva, Switzerland, Jan. 2013

  3. Bjontegaard G (2001) Calculation of average PSNR differences between RD-Curves. In: Proc. ITU-T Q.6/SG16 VCEG 13th Meeting, Austin, TX, Apr. 2001, document VCEG-M33

  4. Chiang T, Zhang Y (1997) A new rate control scheme using quadratic rate distortion model. IEEE Trans Circuits Syst Video Technol 7(2):287–311

    Article  Google Scholar 

  5. Choi H, Yoo J, Nam J, Sim D, Ivan VB (2013) Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J Sel Top Sign Proces 7 (6):1112–1123

    Article  Google Scholar 

  6. Corbera J, Lei S (1997) Rate control for low-delay video communications. ITU Study Group 16, Video Coding Experts Group, Porland, Documents Q15-A-20, 1997

  7. He Z, Mitra S (2002) Optimum bit allocation and accurate rate control for video coding via ρ-domain source modeling. IEEE Trans Circuits Syst Video Technol 12(10):840–849

    Article  Google Scholar 

  8. Jiang M, Ling N (2005) On enhancing H.264/AVC video rate control by PSNR-based frame complexity estimation. IEEE Trans Consum Electron 51(1):281–286

    Article  MathSciNet  Google Scholar 

  9. Kamaci N, Altinbasak Y, Mersereau RM (2005) Frame bit allocation for H.264/AVC video coder via Cauchy density-based rate and distortion models. IEEE Trans Circuits Syst Video Technol 15(8):994–1006

    Article  Google Scholar 

  10. Katto J, Ohta M (1995) Mathematical analysis of MPEG compression capability and its application to rate control. In: Proc. IEEE ICIP, Washington D.C., pp. 555–559

  11. Kim IK, Min J, Lee T, Han WJ, Park J (2012) Block partitioning structure in the HEVC Standard. IEEE Trans Circuits Syst Video Technol 22(12):1697–1706

    Article  Google Scholar 

  12. Kwon D, Shen M, Jay Kuo CC (2007) Rate control for H.264 video with enhanced rate and distortion models. IEEE Trans Circuits Syst Video Technol 17 (5):517–529

    Article  Google Scholar 

  13. Lee B, Kim M, Nguyen TQ (2014) A frame-level rate control scheme based on texture and non-texture rate models for High Efficiency Video Coding. IEEE Trans on Circuits and Syst Video Tech 24(3):465–479

    Article  Google Scholar 

  14. LI ZG, Pan F, Lim KP, Feng GN (2003) Adaptive basic unit layer rate control for JVT. In: Joint Video Team of ISO/IEC MPEG and ITU-T VCEG, JVT-G012, 7th Meeting, Pattaya, Thailand, 2003, pp. 7C14, JVT-G012

  15. Li B, Li H, Li L, Zhang J (2013) Adaptive bit allocation for R-lambda model rate control in HM. JCTVC-M0036, 13-th JCTVC meeting, Shanghai, Apr. 2013

  16. Li B, Li H, Li L, Zhang J (2014) λ domain based rate control for High Efficiency Video Coding. IEEE Trans Image Process 23(9):3841–3854

    Article  MathSciNet  Google Scholar 

  17. Li ZG, Pan F, Lim KP, Feng G, Lin X, Rahardja S (2003) Adaptive basic unit layer rate control for JVT. presented at the 7th JVT Meeting, JVT-G012-rl, Pattaya, Thailand, Mar. 2003

  18. Ma S, Gao W, Lu Y (2005) Rate-distortion analysis for H.264/AVC video coding and its application to rate control. IEEE Trans Circuits Syst Video Technol 15 (12):1533–1544

    Article  Google Scholar 

  19. Mallat S, Falzon F (1998) Analysis of low bit rate image transform coding. IEEE Trans Image Process 46:1027–1042

    Article  Google Scholar 

  20. Mller F (1993) Distribution shape of two-dimensional DCT coefficients of natural images. Electron Lett 29(22):1935–1936

    Article  Google Scholar 

  21. Ohm JR, Sullivan GJ, Schwarz H, Tan TK, Wiegand T (2012) Comparison of the coding efficiency of video coding standards C including High Efficiency Video Coding (HEVC). IEEE Trans Circuits Syst Video Technol 22(12):1669–1684

    Article  Google Scholar 

  22. Seo C-W, Moon J-H, Han J-K (2013) Rate control for consistent objective quality in high efficiency video coding. IEEE Trans Image Process 22(6):2442–2454

    Article  MathSciNet  Google Scholar 

  23. Sullivan G, Wiegand T (1998) Rate-distortion optimization for video compression. IEEE Signal Process Mag 15:74–90

    Article  Google Scholar 

  24. Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the High Efficiency Video Coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  25. Vanne J, Viitanen M, Hmlinen TD, Hallapuro A (2012) Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs. IEEE Trans Circuits Syst Video Technol 22(12):1885–1898

    Article  Google Scholar 

  26. Wang Z, Sheikh HR, Bovik AC, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

  27. Wang S, Ma S, Wang S, Zhao D, Gao W (2013) Rate-GOP based rate control for High Efficiency Video Coding. IEEE J Sel Top Sign Proces 7(6):1101–1111

    Article  Google Scholar 

  28. Yuan W, Lin S, Zhang Y, Luo H (2005) Optimum bit allocation and rate control for H.264/AVC. Joint Video Team of ISO/IEC JTC1/SC29/WG11 and ITU-T SG16/Q.6, Doc. JVT-O016, 15th Meeting, Busan, Korea, Apr. 2005

  29. Yuan Y, Kim IK, Zheng X, Liu L, Cao X, Lee S, Cheon MS, Lee T, He Y, Park JH (2012) Quadtree based non-square block structure for inter frame coding in HEVC. IEEE Trans Circuits Syst Video Technol 22(12):1707–1719

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Lei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, Y., Ye, Y., Lei, J. et al. Rate control for HEVC based on spatio-temporal context and motion complexity. Multimed Tools Appl 76, 14035–14053 (2017). https://doi.org/10.1007/s11042-016-3784-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3784-5

Keywords

Navigation