Skip to main content
Log in

LAP: a bio-inspired local image structure descriptor and its applications

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local structural information is crucially important for human visual system to perceive natural scenes. Recent years, a variety of local image structure description methods have been proposed for the artificial modeling of visual perception. Although existing local image structure descriptors have shown successful performances, one general limitation is their numerical instability caused by ignoring the information of the spatial correlation of local orientation. In this paper, we propose a local image structure descriptor by modeling the anisotropic mechanism in the primary visual cortex. In particular, the pixel-wise anisotropy values of a given image are calculated by pseudo-Wigner-Ville distribution (PWVD) and Rényi entropy. Then the excitatory/inhibitory interactions among visual neurons in the local receptive field are modeled by measuring the similarities between their anisotropies. By mapping visual neurons to image pixels, the correlation between a central pixel and its local neighbors can be represented by a binary pattern which is named as local anisotropic pattern (LAP). Experimental results on texture classification verified that the proposed LAP has satisfactory texture classification accuracy, rotation invariance, and noise robustness; experimental results on no-reference image quality assessment demonstrated that the proposed LAP achieves state-of-the-art performance in objective evaluation of the perceptual quality of natural image, and this reflects that LAP can accurately represent the degradation of local image structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikäinen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  2. Berry Jr. JR, Goutsias J (1991) A comparative study of matrix measures for maximum likelihood texture classification. IEEE Trans Syst Man Cybern 21(1):252–261

  3. Campbell FW, Kulikowski JJ (1966) Orientational selectivity of the human visual system. J. Physiology 187(2):437–445

    Article  Google Scholar 

  4. Camp-Valls G, Bruzzone L (2009) Kernel methods for remote sensing data analysis. Wiley, New York

    Book  MATH  Google Scholar 

  5. Chang C, Lin C LIBSVM: A library for support vector machines. [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

  6. Cristobal G, Schelkens P, Thienpont H (2011) Optical and digital image processing: Fundamentals and applications. Wiley, NY, USA

    Book  Google Scholar 

  7. Fan K-C, Hung T-Y (2014) A novel local pattern descriptor - local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(7):2877–2891

    Article  MathSciNet  Google Scholar 

  8. Fieguth P (2011) Statistical image processing and multidimensional modeling. Springer-Verlag, NY, USA

    Book  MATH  Google Scholar 

  9. Friston K (2010) The free-energy principle: A unified brain theory? Nat Rev Neurosci 11(2):127–138

    Article  Google Scholar 

  10. Furmanski CS, Engel SA (2000) An oblique effect in human primary visual cortex. Nat Neurosci 3:535–536

    Article  Google Scholar 

  11. Gabarda S, Cristóbal G. (2007) Blind image quality assessment through anisotropy. J Opt Soc Am A 24(12):B42–B50

    Article  Google Scholar 

  12. Gerrow K, Triller A (2010) Synaptic stability and plasticity in a floating world. Curr Opin Neurobiol 20(5):631–639

    Article  Google Scholar 

  13. Ghosh K, Sarkar S, Bhaumik K (2009) A possible mechanism of stochastic resonance in the light of an extra-classical receptive field model of retinal ganglion cells. Biol Cybern 100(5):351–359

    Article  Google Scholar 

  14. Guo Z, Zhang L, Zhang D (2010) Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognit 43(3):706–719

    Article  MATH  Google Scholar 

  15. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1633

    Article  MathSciNet  Google Scholar 

  16. Hafiane A, Palaniappan K, Seetharaman G (2015) Joint adaptive median binary patterns for texture classification. Pattern Recognit 48(8):2609–2620

    Article  Google Scholar 

  17. Heikkilä M, Pietikäinen M (2006) A texture-based method for modeling the background and detecting moving objects. IEEE Trans Pattern Anal Mach Intell 28 (4):657–662

    Article  Google Scholar 

  18. Knill DC, Pouget R (2004) The bayesian brain: The role of uncertainty in neural coding and computation. Trends Neurosci 27:712–719

    Article  Google Scholar 

  19. Kodituwakku S, Kennedy RA, Abhayapala TD (2010) Radial function based kernel design for time-frequency distributions. IEEE Trans Signal Process 58 (6):3395–3400

    Article  MathSciNet  Google Scholar 

  20. Kong H, Sarma SE, Tang F (2013) Generalizing Laplacian of Gaussian filters for vanishing-point detection. IEEE Trans Intell Transp Syst 14(1):408–418

    Article  Google Scholar 

  21. Krisanova EN, Sadovsky MG (2002) Entropy approach in the analysis of anisotropy of digital images. Open Syst Inf Dyn 9(3):239–250

    Article  MATH  Google Scholar 

  22. Larson EC, Chandler DM (2010) Most apparent distortion: Full reference image quality assessment and the role of strategy. J Electron Imag 19(1):011006

    Article  Google Scholar 

  23. Lebrun M, Colom M, Morel J. -M. (2015) Multiscale image blind denoising. IEEE Trans Image Process 24(10):3149–3161

    Article  MathSciNet  Google Scholar 

  24. Liu L, Dong H, Huang H, Bovik AC (2014) No-reference image quality assessment in curvelet domain. Signal Process -Image Commun 29(4):494–505

    Article  Google Scholar 

  25. Lorenzi L, Mercier G, Melgani F (2013) Support vector regression with kernel combination for missing data reconstruction. IEEE Geosci Remote Sens Lett 10 (2):367–371

    Article  Google Scholar 

  26. Ma L, Crawford MM, Tian J (2010) Local manifold learning-based k-nearest-neighbor for hyperspectral image classification. IEEE Trans Geosci Remote Sens 48(11):4099–4109

    Google Scholar 

  27. Ma L, Crawford MM, Yang Y, Guo Y (2015) Local-manifold-learning-based graph construction for semisupervised hyperspectral image classification. IEEE Trans Geosci Remote Sens 53(5):2832– 2844

    Article  Google Scholar 

  28. Maloney RT, Clifford CWG (2015) Orientation anisotropies in human primary visual cortex depend on contrast. Neuroimage 119:129–145

    Article  Google Scholar 

  29. Mangasarian OL, Musicant DR (2000) Robust linear and support vector regression. IEEE Trans Pattern Anal Mach Intell 22(9):950–955

    Article  Google Scholar 

  30. Mannion DJ, McDonald JS, Clifford CWG (2010) Orientation anisotropies in human visual cortex. J Neurophysiol 103(6):3465–3471

    Article  Google Scholar 

  31. Michmizos D, Koutsouraki E, Asprodini E, Baloyannis S (2011) Synaptic plasticity: A unifying model to address some persisting questions. Int J Neurosci 121 (6):289–304

    Article  Google Scholar 

  32. Mittal A, Moorthy AK, Bovik AC (2012) No-reference image quality assessment in the spatial domain. IEEE Trans Image Process 21(12):4695–4708

    Article  MathSciNet  Google Scholar 

  33. Mouats T, Aouf N, Richardson MA (2015) A novel image representation via local frequency analysis for illumination invariant stereo matching. IEEE Trans Image Process 24(9):2685–2700

    Article  MathSciNet  Google Scholar 

  34. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  35. Ojala T, Pietikäinen M., Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  36. Ojala T, Mäenpää T, Pietikäinen M, Viertola J, Kyllönen J, Huovinen S (2002) Outex - new framework for empirical evaluation of texture analysis algorithms. In: Proceedings International Conference Pattern Recognition, pp 701–706

  37. Pan Z, Fan H, Zhang L (2015) Texture classification using local pattern based on vector quantization. IEEE Trans Image Process 24(12):5379–5388

    Article  MathSciNet  Google Scholar 

  38. Park SH, Cha K, Lee S-H (2013) Coaxial anisotropy of cortical point spread in human visual areas. J Neurosci 33(3):1143–1156

    Article  Google Scholar 

  39. Ponomarenko N, Lukin V, Zelensky A, Egiazarian K, Carli M, Battisti F (2009) TID2008-A database for evaluation of full-reference visual quality assessment metrics. Adv Modern Radio Electron 10(4):30–45

    Google Scholar 

  40. Rahtu E, Heikkilä J, Ojansivub V, Ahonenc T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512

    Article  Google Scholar 

  41. Rényi A (1961) On measures of entropy and information. In: Proceedings Berkeley Symposium Mathematics Statistics Probability, pp 547–561

  42. Ryu J, Hong S, Yang HS (2015) Sorted consecutive local binary pattern for texture classification. IEEE Trans Image Process 24(7):2254–2265

    Article  MathSciNet  Google Scholar 

  43. Shannon CE (1948) A mathematical theory of communication. Bell Labs Tech J 27(3):379–423

    Article  MathSciNet  MATH  Google Scholar 

  44. Sheikh HR, Wang Z, Cormack L, Bovik AC LIVE image quality assessment database release 2. [Online]. Available: http://live.ece.utexas.edu/research/quality

  45. Smola AJ, Schölkopf B. (2004) A tutorial on support vector regression. Statist Comput 14(3):199–222

    Article  MathSciNet  Google Scholar 

  46. Swisher JD, Gatenby JC, Gore JC, Wolfe BA, Moon C-H, Kim S-G, Tong F (2010) Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. J Neurosci 30(1):325–330

    Article  Google Scholar 

  47. Tamura H, Mori S, Yamawaki T (1978) Textural features corresponding to visual perception. IEEE Trans Syst Man Cybern 8(6):460–472

    Article  Google Scholar 

  48. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  Google Scholar 

  49. Vipparthi SK, Murala S, Nagar SK, Gonde AB (2015) Local Gabor maximum edge position octal patterns for image retrieval. Neurocomputing 167:336–345

    Article  Google Scholar 

  50. Wang Z, Bovik AC (2006) Modern image quality assessment. Morgan & Claypool, San Rafael, CA

    Google Scholar 

  51. Wang Z, Bovik AC (2009) Mean squared error: Love it or leave it? IEEE Signal Process Mag 26(1):98–117

    Article  Google Scholar 

  52. Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: From error visibility to structural similarity. IEEE Trans Image Process 13 (4):600–612

    Article  Google Scholar 

  53. Wu J, Lin W, Shi G (2014) Image quality assessment with degradation on spatial structure. IEEE Signal Process Lett 21(4):437–440

    Article  Google Scholar 

  54. Wu J, Lin W, Shi G, Zhang Y, Dong W, Chen Z (2015) Visual orientation selectivity based structure description. IEEE Trans Image Process 24(11):4602–4613

    Article  MathSciNet  Google Scholar 

  55. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  56. Xu Y, Zhao Y, Jin C, Qu Z, Liu L, Sun X (2010) Salient target detection based on pseudo-Wigner-Ville distribution and Rényi entropy. Opt Lett 35 (4):475–477

    Article  Google Scholar 

  57. Yamada K, Miyawaki Y, Kamitani Y (2015) Inter-subject neural code converter for visual image representation. Neuroimage 113:289–297

    Article  Google Scholar 

  58. Yeffet L, Wolf L (2009) Local trinary patterns for human action recognition. In: Proceedings IEEE International Conference Computer Vision, pp 492–497

  59. Zhang Z-C (2015) Unified Wigner-Ville distribution and ambiguity function in the linear canonical transform domain. Signal Process 114:45–60

    Article  Google Scholar 

  60. Zhang B, Chen S (2013) A comparative study on local binary pattern (LBP) based face recognition: LBP histogram versus LBP image. Neurocomputing 120:365–379

    Article  Google Scholar 

  61. Zhang Y, Chandler OM (2013) No-reference image quality assessment based on log-derivative statistics of natural scenes. J Electron Imaging 22(4):043025

    Article  Google Scholar 

  62. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  63. Zhang L, Zhang L, Mou X, Zhang D (2011) FSIM: A feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  64. Zhang M, Muramatsu C, Zhou X, Hara T, Fujita H (2015) Blind image quality assessment using the joint statistics of generalized local binary pattern. IEEE Signal Process Lett 22(2):207–201

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper. They would also like to thank the members at the Institute of Circuits and Systems, School of Information Science and Engineering, Lanzhou University, for valuable discussions. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 61175012 and the Fundamental Research Funds for the Central Universities of China under Grant lzujbky-2015-196.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songlin Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, S., Yan, Y. & Ma, Y. LAP: a bio-inspired local image structure descriptor and its applications. Multimed Tools Appl 76, 13973–13993 (2017). https://doi.org/10.1007/s11042-016-3779-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3779-2

Keywords

Navigation