Skip to main content
Log in

Learning spherical hashing based binary codes for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Local feature descriptor has been widely used in computer vision field due to their excellent discriminative power and strong robustness. However, the forms of such local descriptors are predefined in the hand-crafted way, which requires strong domain knowledge to design them. In this paper, we propose a simple and efficient Spherical Hashing based Binary Codes (SHBC) feature learning method to learn a discriminative and robust binary face descriptor in the data-driven way. Firstly, we extract patch-wise pixel difference vectors (PDVs) by computing the difference between center patch and its neighboring patches. Then, inspired by the fact that hypersphere provide much stronger power in defining a tighter closed region in the original data space than hyperplane, we learn a hypersphere-based hashing function to map these PDVs into low-dimensional binary codes by an efficient iterative optimization process, which achieves both balanced bits partitioning of data points and independence between hashing functions. In order to better capture the semantic information of the dataset, our SHBC also can be used with supervised data embedding method, such as Canonical Correlation Analysis (CCA), namely Supervised-SHBC (S-SHBC). Lastly, we cluster and pool these learned binary codes into a histogram-based feature that describes the co-occurrence of binary codes. And we consider the histogram-based feature as our final feature representation for each face image. We investigate the performance of our SHBC and S-SHBC on FERET, CAS-PEAL-R1, LFW and PaSC databases. Extensive experimental results demonstrate that our SHBC descriptor outperforms other state-of-the-art face descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The results of other methods in this figure are cited from http://vis-www.cs.umass.edu/lfw/results.html

  2. The eye coordinates of each face image can be found at http://www.cs.colostate.edu/~vision/pasc/index.php

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28 (12):2037–2041. doi:10.1109/TPAMI.2006.244

    Article  MATH  Google Scholar 

  2. Andoni A, Indyk P (2006) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. In: 47th Annual IEEE symposium on foundations of computer science, 2006. FOCS’06. IEEE, pp 459–468

  3. Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun ACM 51(1):117–122. doi:10.1145/1327452.1327494

    Article  Google Scholar 

  4. Arashloo SR, Kittler J (2013) Efficient processing of mrfs for unconstrained-pose face recognition. In: 2013 IEEE Sixth international conference on biometrics: theory, applications and systems (BTAS). IEEE, pp 1–8

  5. Bartlett M, Movellan JR, Sejnowski T (2002) Face recognition by independent component analysis. IEEE Trans Neural Netw 13(6):1450–1464. doi:10.1109/TNN.2002.804287

    Article  Google Scholar 

  6. Belhumeur P, Hespanha J, Kriegman D (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720. doi:10.1109/34.598228

    Article  Google Scholar 

  7. Beveridge JR, Phillips J, Bolme DS, Draper B, Givens GH, Lui YM, Teli MN, Zhang H, Scruggs WT, Bowyer KW et al (2013) The challenge of face recognition from digital point-and-shoot cameras. In: 2013 IEEE Sixth international conference on biometrics: theory, applications and systems (BTAS). IEEE, pp 1–8

  8. Chakraborty S, Singh SK, Chakraborty P (2015) Local directional gradient pattern: a local descriptor for face recognition. Multimed Tools Appl:1–16

  9. Chan TH, Jia K, Gao S, Lu J, Zeng Z, Ma Y (2014) Pcanet: a simple deep learning baseline for image classification? arXiv preprint arXiv:14043606

  10. Fan KC, Hung TY (2014) A novel local pattern descriptor-local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(7):2877–2891. doi:10.1109/TIP.2014.2321495

    Article  MathSciNet  Google Scholar 

  11. Gao W, Cao B, Shan S, Chen X, Zhou D, Zhang X, Zhao D (2008) The cas-peal large-scale chinese face database and baseline evaluations. IEEE Trans Syst Man Cybern Part A: Syst and Humans 38(1):149–161

    Article  Google Scholar 

  12. Gong Y, Lazebnik S (2011) Iterative quantization: a procrustean approach to learning binary codes. In: 2011 IEEE conference on computer vision and pattern recognition (CVPR), pp 817–824. doi:10.1109/CVPR.2011.5995432

  13. Gong Y, Kumar S, Verma V, Lazebnik S (2012) Angular quantization-based binary codes for fast similarity search. In: Advances in neural information processing systems, pp 1196–1204

  14. Gong Y, Lazebnik S, Gordo A, Perronnin F (2013) Iterative quantization: a procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans Pattern Anal Mach Intell 35(12):2916–2929. doi:10.1109/TPAMI.2012.193

    Article  Google Scholar 

  15. Guo Z, Zhang L, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  16. Huang GB, Ramesh M, Berg T, Learned-Miller E (2007) Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Tech. rep. Technical Report 07-49. University of Massachusetts, Amherst

  17. Hussain SU, Napoléon T, Jurie F (2012) Face recognition using local quantized patterns. In: British machive vision conference, pp 11–pages

  18. Kan M, Shan S, Chang H, Chen X (2014) Stacked progressive auto-encoders (spae) for face recognition across poses. In: 2014 IEEE conference on computer vision and pattern recognition (CVPR), pp 1883–1890. doi:10.1109/CVPR.2014.243

  19. Kulis B, Grauman K (2012) Kernelized locality-sensitive hashing. IEEE Trans Pattern Anal Mach Intell 34(6):1092–1104. doi:10.1109/TPAMI.2011.219

    Article  Google Scholar 

  20. Lei Z, Li SZ, Chu R, Zhu X (2007) Face recognition with local gabor textons. In: Advances in biometrics. Springer, pp 49–57

  21. Lei Z, Liao S, Pietikainen M, Li S (2011) Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans Image Process 20 (1):247–256. doi:10.1109/TIP.2010.2060207

    Article  MathSciNet  Google Scholar 

  22. Lei Z, Pietikainen M, Li SZ (2014) Learning discriminant face descriptor. IEEE Trans Pattern Anal Mach Intell 36(2):289–302

    Article  Google Scholar 

  23. Liu C, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11 (4):467–476. doi:10.1109/TIP.2002.999679

    Article  Google Scholar 

  24. Liu W, Wang J, Kumar S, Chang SF (2011) Hashing with graphs. In: Proceedings of the 28th international conference on machine learning (ICML-11), pp 1–8

  25. Lu J, Liong V, Wang G, Moulin P (2015a) Joint feature learning for face recognition. IEEE Trans Inform Forens Secur 10(7):1371–1383. doi:10.1109/TIFS.2015.2408431

    Article  Google Scholar 

  26. Lu J, Liong V, Zhou X, Zhou J (2015b) Learning compact binary face descriptor for face recognition. IEEE Trans Pattern Anal Mach Intell PP(99):1–1. doi:10.1109/TPAMI.2015.2408359

    Google Scholar 

  27. Lui Y M, Bolme D, Phillips P J, Beveridge J R, Draper B et al (2012) Preliminary studies on the good, the bad, and the ugly face recognition challenge problem. In: 2012 IEEE computer society conference on computer vision and pattern recognition workshops (CVPRW). IEEE, pp 9–16

  28. Maturana D, Mery D, Soto A (2011a) Learning discriminative local binary patterns for face recognition. In: 2011 IEEE International conference on automatic face & gesture recognition and workshops (FG 2011). IEEE, pp 470–475

  29. Maturana D, Mery D, Soto l (2011b) Face recognition with decision tree-based local binary patterns. In: Kimmel R, Klette R, Sugimoto A (eds) Computer vision ACCV 2010, lecture notes in computer science. doi:10.1007/978-3-642-19282-1_49, vol 6495. Springer, Berlin Heidelberg, pp 618–629

  30. Meng X, Shan S, Chen X, Gao W (2006) Local visual primitives (lvp) for face modelling and recognition. In: 18th International conference on pattern recognition, 2006. ICPR 2006. IEEE, vol 2, pp 536– 539

  31. Meyers E, Wolf L (2008) Using biologically inspired features for face processing. Int J Comput Vis 76(1):93–104

    Article  Google Scholar 

  32. Phillips PJ, Moon H, Rizvi S, Rauss P J et al (2000) The feret evaluation methodology for face-recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22 (10):1090–1104

    Article  Google Scholar 

  33. Phillips PJ, Beveridge JR, Draper B, Givens G, Toole AJ, Bolme DS, Dunlop J, Lui YM, Sahibzada H, Weimer S et al (2011) An introduction to the good, the bad, & the ugly face recognition challenge problem. In: 2011 IEEE International conference on automatic face & gesture recognition and workshops (FG 2011). IEEE, pp 346–353

  34. Raginsky M, Lazebnik S (2009) Locality-sensitive binary codes from shift-invariant kernels. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in neural information processing systems, vol 22. Curran Associates Inc., pp 1509–1517

  35. Rahtu E, Heikkilä J, Ojansivu V, Ahonen T (2012) Local phase quantization for blur-insensitive image analysis. Image Vis Comput 30(8):501–512

    Article  Google Scholar 

  36. Seo HJ, Milanfar P (2011) Face verification using the lark representation. IEEE Trans Inform Forens Secur 6(4):1275–1286

    Article  Google Scholar 

  37. Sharma G, ul Hussain S, Jurie F (2012) Local higher-order statistics (lhs) for texture categorization and facial analysis. In: Computer vision–ECCV 2012. Springer, pp 1–12

  38. Singh R, Om H (2013) An overview of face recognition in an unconstrained environment. In: 2013 IEEE Second international conference on image information processing (ICIIP), pp 672–677. doi:10.1109/ICIIP.2013.6707679

  39. Sun Y, Chen Y, Wang X, Tang X (2014) Deep learning face representation by joint identification-verification. In: Advances in neural information processing systems, pp 1988–1996

  40. Taigman Y, Ming Y, Ranzato M, Wolf L (2014) Deepface: closing the gap to human-level performance in face verification. In: 2014 IEEE Conference on computer vision and pattern recognition (CVPR), pp 1701–1708. doi:10.1109/CVPR.2014.220

  41. Tian L, Fan C, Ming Y, Jin Y (2015) Stacked pca network (spcanet): an effective deep learning for face recognition. In: 2015 IEEE International conference on digital signal processing (DSP). IEEE, pp 1039–1043

  42. Turk M, Pentland A (1991) Face recognition using eigenfaces. In: IEEE Computer society conference on computer vision and pattern recognition, 1991. Proceedings CVPR ’91., pp 586–591. doi:10.1109/CVPR.1991.139758

  43. Vu NS, Caplier A (2012) Enhanced patterns of oriented edge magnitudes for face recognition and image matching. IEEE Trans Image Process 21(3):1352–1365

    Article  MathSciNet  Google Scholar 

  44. Wang N, Li Q, El-Latif AAA, Peng J, Niu X (2014) An enhanced thermal face recognition method based on multiscale complex fusion for gabor coefficients. Multimed Tools Appl 72(3):2339–2358

    Article  Google Scholar 

  45. Weiss Y, Torralba A, Fergus R (2009) Spectral hashing. In: Koller D, Schuurmans D, Bengio Y, Bottou L (eds) Advances in neural information processing systems. http://papers.nips.cc/paper/3383-spectral-hashing.pdf, vol 21. Curran Associates Inc., pp 1753–1760

  46. Werghi N, Berretti S, Del Bimbo A (2015) The mesh-lbp: a framework for extracting local binary patterns from discrete manifolds. IEEE Trans Image Process 24 (1):220–235. doi:10.1109/TIP.2014.2370253

    Article  MathSciNet  Google Scholar 

  47. Xia Y, He K, Kohli P, Sun J (2015) Sparse projections for high-dimensional binary codes. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3332–3339

  48. Xie S, Shan S, Chen X, Meng X, Gao W (2009) Learned local gabor patterns for face representation and recognition. Signal Process 89(12):2333–2344

    Article  MATH  Google Scholar 

  49. Xie S, Shan S, Chen X, Chen J (2010) Fusing local patterns of gabor magnitude and phase for face recognition. IEEE Trans Image Process 19(5):1349–1361. doi:10.1109/TIP.2010.2041397

    Article  MathSciNet  Google Scholar 

  50. Yang BQ, Zhang T, Gu CC, Wu KJ, Guan XP (2015) A novel face recognition method based on iwld and iwbc. Multimed Tools Appl:1–24

  51. Yi S, Xiaogang W, Xiaoou T (2014) Deep learning face representation from predicting 10,000 classes. In: 2014 IEEE Conference on computer vision and pattern recognition (CVPR), pp 1891–1898. doi:10.1109/CVPR.2014.244

  52. Ylioinas J, Hadid A, Kannala J, Pietikainen M (2014) An in-depth examination of local binary descriptors in unconstrained face recognition. In: 2014 22nd International conference on pattern recognition (ICPR). IEEE, pp 4471–4476

  53. Yu FX, Kumar S, Gong Y, Chang SF (2014) Circulant binary embedding. arXiv preprint arXiv:14053162

  54. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (hgpp): a novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68. doi:10.1109/TIP.2006.884956

    Article  MathSciNet  Google Scholar 

  55. Zhang B, Gao Y, Zhao S, Liu J (2010) Local derivative pattern versus local binary pattern: face recognition with high-order local pattern descriptor. IEEE Trans Image Process 19(2):533–544

    Article  MathSciNet  Google Scholar 

  56. Zhang H, Beveridge J, Mo Q, Draper B, Phillips P (2014) Randomized intraclass-distance minimizing binary codes for face recognition. In: 2014 IEEE international joint conference on biometrics (IJCB), pp 1–8. doi:10.1109/BTAS.2014.6996258

  57. Zhang W, Shan S, Gao W, Chen X, Zhang H (2005) Local gabor binary pattern histogram sequence (lgbphs): a novel non-statistical model for face representation and recognition. In: Tenth IEEE international conference on computer vision, 2005. ICCV 2005, vol 1, pp 786–791. doi:10.1109/ICCV.2005.147

Download references

Acknowledgments

The work presented in this paper was supported by the National Natural Science Foundation of China (Grants No. NSFC-61402046, NSFC-61170176), Fund for Beijing University of Posts and Telecommunications (No.2013XZ10, 2013XD-04), Fund for the Doctoral Program of Higher Education of China (Grants No.20120005110002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Ming.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Fan, C. & Ming, Y. Learning spherical hashing based binary codes for face recognition. Multimed Tools Appl 76, 13271–13299 (2017). https://doi.org/10.1007/s11042-016-3708-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3708-4

Keywords

Navigation