Skip to main content
Log in

Mobile multi-view object image search

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

High user interaction capability of mobile devices can help improve the accuracy of mobile visual search systems. At query time, it is possible to capture multiple views of an object from different viewing angles and at different scales with the mobile device camera to obtain richer information about the object compared to a single view and hence return more accurate results. Motivated by this, we propose a new multi-view visual query model on multi-view object image databases for mobile visual search. Multi-view images of objects acquired by the mobile clients are processed and local features are sent to a server, which combines the query image representations with early/late fusion methods and returns the query results. We performed a comprehensive analysis of early and late fusion approaches using various similarity functions, on an existing single view and a new multi-view object image database. The experimental results show that multi-view search provides significantly better retrieval accuracy compared to traditional single view search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. A9.com, Inc. (2015) Amazon flow. http://www.a9.com/whatwedo/mobile-technology/flow-powered-by-amazon. Accessed: 2016-04-20

  2. Arandjelovic R, Zisserman A (2012) Multiple queries for large scale specific object retrieval. In: British machine vision conference. BMVA Press, pp 92.1–92.11

  3. Babenko A, Lempitsky V (2015) Aggregating deep convolutional features for image retrieval

  4. Bay H, Tuytelaars T, Van Gool L (2006) SURF: speeded up robust features. In: European conference on computer vision, lecture notes in computer science, vol 3951. Springer, Berlin, pp 404–417

  5. CamFind (2015) CamFind. http://camfindapp.com. Accessed: 2016-04-20

  6. Cha SH (2007) Comprehensive survey on distance/similarity measures between probability density functions. International Journal of Mathematical Models and Methods in Applied Sciences 1(4):300–307

    MathSciNet  Google Scholar 

  7. Chen DM, Baatz G, Köser K, Tsai SS, Vedantham R, Pylvä T, Roimela K, Chen X, Bach J, Pollefeys M, Girod B, Grzeszczuk R (2011) City-scale landmark identification on mobile devices. In: Computer vision and pattern recognition. IEEE, pp 737–744

  8. Chen DM, Girod B (2013) Memory-efficient image databases for mobile visual search. In: IEEE multimedia, vol 21, pp 14–23

  9. Cummins M, Philbin J (2015) PlinkArt. http://www.androidtapp.com/plinkart. Accessed: 2016-04-20

  10. DigiMarc, Co (2015) Digimarc discover. http://www.digimarc.com/discover. Accessed: 2016-04-20

  11. Girod B, Chandrasekhar V, Chen DM, Cheung N, Grzeszczuk R, Reznik YA, Takacs G, Tsai SS, Vedantham R (2011) Mobile visual search. IEEE Signal Proc Mag 28(4):61–76

    Article  Google Scholar 

  12. Girod B, Chandrasekhar V, Grzeszczuk R, Reznik YA (2011) Mobile visual search: architectures, technologies, and the emerging MPEG standard. IEEE Multimedia 18(3):86–94

    Article  Google Scholar 

  13. Google, Inc (2015) Google goggles. http://www.google.com/mobile/goggles. Accessed: 2016-04-20

  14. Griffin G, Holub A, Perona P (2007) Caltech-256 object category dataset. Tech. Rep. CNS-TR-2007-001, California Institute of Technology

  15. Guan T, He Y, Duan L, Yang J, Gao J, Yu J (2014) Efficient BOF generation and compression for on-device mobile visual location recognition. IEEE Multimedia 21(2):32–41

    Article  Google Scholar 

  16. Gunawardana A, Shani G (2009) A survey of accuracy evaluation metrics of recommendation tasks. J Mach Learn Res 10:2935–2962

    MathSciNet  MATH  Google Scholar 

  17. Itseez (2015) OpenCV: open source computer vision library. http://opencv.org. Accessed: 2016-04-20

  18. Ji R, Yu FX, Zhang T, Chang SF (2012) Active query sensing: suggesting the best query view for mobile visual search. ACM Trans Multimed Comput Commun Appl 8(3s):40

    Article  Google Scholar 

  19. Joseph S, Balakrishnan K (2011) Multi-query content based image retrieval system using local binary patterns. Int J Comput Appl 17(7):1–5

    Google Scholar 

  20. Lampert CH (2009) Detecting objects in large image collections and videos by efficient subimage retrieval. In: International conference on computer vision, pp 987–994

  21. Lee CH, Lin MF (2012) A multi-query strategy for content-based image retrieval. International Journal of Advanced Information Technologies 5(2):266–275

    MathSciNet  Google Scholar 

  22. Li D, Chuah MC (2015) EMOD: an efficient on-device mobile visual search system. In: ACM multimedia systems conference, pp 25–36

  23. Mazloom M, Habibian AH, Snoek CGM (2013) Querying for video events by semantic signatures from few examples. In: ACM multimedia conference, pp 609–612

  24. Min W, Xu C, Xu M, Xiao X, Bao BK (2014) Mobile landmark search with 3D models. IEEE Trans Multimedia 16(3):623–636

    Article  Google Scholar 

  25. Moghaddam B, Biermann H, Margaritis D (2001) Regions-of-interest and spatial layout for content-based image retrieval. Multimedia Tools and Applications 14 (2):201–210

    Article  Google Scholar 

  26. Niaz U, Merialdo B (2013) Fusion methods for multimodal indexing of web data. In: International workshop on image and audio analysis for multimedia interactive services. Paris, France

  27. Nokia (2015) Point and find. https://en.wikipedia.org/wiki/Nokia_Point_%26_Find. Accessed: 2016-04-20

  28. Paulin M, Douze M, Harchaoui Z, Mairal J, Perronin F, Schmid C (2015) Local convolutional features with unsupervised training for image retrieval. In: International conference on computer vision

  29. Qualcomm Connected Experiences, Inc (2015) Kooaba: image recognition. http://www.kooaba.com. Accessed: 2016-04-20

  30. Shen X, Lin Z, Brandt J, Wu Y (2012) Mobile product image search by automatic query object extraction. In: European conference on computer vision, pp 114–127

  31. Su Y, Chiu T, Chen Y, Yeh C, Hsu WH (2013) Enabling low bitrate mobile visual recognition: a performance versus bandwidth evaluation. In: ACM multimedia conference, pp 73–82

  32. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2015) Rethinking the inception architecture for computer vision. arXiv:1512.00567

  33. Tang J, Acton S (2003) An image retrieval algorithm using multiple query images. In: International symposium on signal processing and its applications, vol 1, pp 193–196

  34. Tuytelaars T, Mikolajczyk K (2008) Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision:177–280

  35. Wang Y, Mei T, Wang J, Li H, Li S (2011) JIGSAW: interactive mobile visual search with multimodal queries. In: ACM international conference on multimedia, MM ’11, pp 73–82

  36. Xue Y, Qian X, Zhang B (2013) Mobile image retrieval using multi-photos as query. In: IEEE international conference on multimedia and expo workshops, pp 1–4

  37. Yu FX, Ji R, Chang SF (2011) Active query sensing for mobile location search. In: ACM international conference on multimedia. ACM, pp 3–12

  38. Zhang C, Chen X, Chen WB (2007) An online multiple instance learning system for semantic image retrieval. In: IEEE international symposium on multimedia workshops, pp 83–84

  39. Zhang N, Mei T, Hua XS, Guan L, Li S (2015) Taptell: interactive visual search for mobile task recommendation. J Vis Commun Image Represent 29(0):114–124

    Article  Google Scholar 

  40. Zhang S, Yang M, Cour T, Yu K, Metaxas DN (2012) Query specific fusion for image retrieval. In: Computer vision - ECCV 2012, lecture notes in computer science, vol 7573, pp 660–673

  41. Zhu L, Shen J, Jin H, Xie L, Zheng R (2015) Landmark classification with hierarchical multi-modal exemplar feature. IEEE Trans Multimedia 17(7):981–993

    Article  Google Scholar 

  42. Zhu L, Zhang A (2000) Supporting multi-example image queries in image databases. In: International conference on multimedia and expo, pp 697–700

Download references

Acknowledgments

The first author was supported by The Scientific and Technological Research Council of Turkey (TÜBİTAK) under BİDEB 2228-A Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Güdükbay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çalışır, F., Baştan, M., Ulusoy, Ö. et al. Mobile multi-view object image search. Multimed Tools Appl 76, 12433–12456 (2017). https://doi.org/10.1007/s11042-016-3659-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3659-9

Keywords

Navigation