Multimedia Tools and Applications

, Volume 75, Issue 24, pp 17647–17668 | Cite as

Big data-based multimedia transcoding method and its application in multimedia data mining-based smart transportation and telemedicine

  • Dingju Zhu


The method and system proposed in this paper obtain different data and same data between current multimedia data and pre-stored data by comparing current multimedia data and pre-stored data and encode the attribute information of same data from encoding big data. It is not necessary to encode all multimedia data, but to encode different data and attribute information only. Different data account for a small proportion of the entire multimedia data, while same data represent most of the entire multimedia data. Besides, the encoding of same data is concerned with the attribute information of same data, so the quantity of encoding data is very small and hence the compression ratio is very higher.


Big data Multimedia transcoding Multimedia data mining Smart transportation Telemedicine 



This research was supported by Major Project of Guangdong Province under Grant No. 2014B090901064, Project of Guangdong Province under Grant No. 2015A010103013, Major Project of National Social Science Fund under Grant No. 14ZDB101, and National Natural Science Foundation of China under Grant No. 61105133.


  1. 1.
    Ahmad I, Wei X, Sun Y et al (2005) Video transcoding: an overview of various techniques and research issues. IEEE Trans Multimed 7(5):793–804CrossRefGoogle Scholar
  2. 2.
    Babu DV, Alamelu NR (2014) A novel morpho codec for medical video compression based on lifting wavelet transform. Asian J Sci Res 7(1):85CrossRefGoogle Scholar
  3. 3.
    Desai S, Usha BS (2011) Medical image transcoder for telemedicine based on wireless communication devices. 2011 3rd Int Conf IEEE Electron Comput Technol (ICECT) 1:389–393CrossRefGoogle Scholar
  4. 4.
    Diaz-Honrubia AJ, Martinez JL, Cuenca P (2014) Multiple Reference Frame Transcoding from H. 264/AVC to HEVC //MultiMedia Modeling. Springer International Publishing, pp 593– 604Google Scholar
  5. 5.
    Kim S, Cho NI (2014) Hierarchical prediction and context adaptive coding for lossless color image compression. IEEE Trans Image Process 23(1):445–449MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lin Y, Yang J, Lv Z et al (2015) A Self-Assessment stereo capture model applicable to the internet of things. Sensors 15(8):20925–20944CrossRefGoogle Scholar
  7. 7.
    Lv Z, Yin T, Han Y et al (2011) WebVRweb virtual reality engine based on P2P network. J Netw 6(7):990–998Google Scholar
  8. 8.
    Lv Z, Tek A, Da Silva F et al (2013) Game on, science-how video game technology may help biologists tackle visualization challenges. PloS one 8(3):57990CrossRefGoogle Scholar
  9. 9.
    Lv Z, Halawani A, Feng S et al (2014) Multimodal hand and foot gesture interaction for handheld devices. ACM Trans Multimed Comput Commun Appl (TOMM) 11(1s):10Google Scholar
  10. 10.
    Lv Z, Halawani A, Fen S et al (2015) Touch-less interactive augmented reality game on vision based wearable device. Pers Ubiquit Comput 19(3):551–567CrossRefGoogle Scholar
  11. 11.
    Mcphillen J, Liao K, Arana M Key frame aligned transcoding using key frame list file: U.S. Patent Application 13/787,559 . 2013-3-6Google Scholar
  12. 12.
    Morris BT, Trivedi MM (2013) Understanding vehicular traffic behavior from video: a survey of unsupervised approaches. J Electron Imaging 22(4):041113–041113CrossRefGoogle Scholar
  13. 13.
    Rasche KR Lossy compression of high dynamic range video: U.S. Patent 8,666,186. 2014-3-4Google Scholar
  14. 14.
    Su T, Wang W, Lv Z et al (2016) Rapid Delaunay triangulation for randomly distributed point cloud data using adaptive Hilbert curve. Comput Graph 54:65–74CrossRefGoogle Scholar
  15. 15.
    Vetro A, Sun H, Wang Y (2001) Object-based transcoding for adaptable video content delivery. IEEE Trans Circ Syst Video Technol 11(3):387–401CrossRefGoogle Scholar
  16. 16.
    Wang K, Zhou X, Li T et al (2014) Optimizing load balancing and data-locality with dataaware scheduling. In: 2014 IEEE International Conference on Big Data (Big Data). IEEE, pp 119–128Google Scholar
  17. 17.
    Wang Y, Agrawal G, Ozer G et al (2014) Removing sequential bottlenecks in analysis of nextgeneration sequencing data. In: 2014 IEEE International Parallel & Distributed Processing Symposium Workshops (IPDPSW). IEEE, pp 508–517Google Scholar
  18. 18.
    Wang Y, Su Y, Agrawal G (2015) A novel approach for approximate aggregations over arrays. Proceedings of the 27th International Conference on Scientic and Statistical Database Management. ACM, p 4Google Scholar
  19. 19.
    Yang J, He S, Lin Y et al (2015) Multimedia cloud transmission and storage system based on internet of things. Multimedia Tools and Applications, pp 1–16Google Scholar
  20. 20.
    Zhang S, Zhang X, Ou X (2014) After we knew it: empirical study and modeling of cost-effectiveness of exploiting prevalent known vulnerabilities across iaas cloud. In: Proceedings of the 9th ACM symposium on information, computer and communications security. ACM, pp 317–328Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Computer ScienceSouth China Normal UniversityGuangzhouChina

Personalised recommendations