Advertisement

Multimedia Tools and Applications

, Volume 75, Issue 16, pp 9641–9663 | Cite as

DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geometry learning

  • E. Gutiérrez de RavéEmail author
  • F. J. Jiménez-Hornero
  • A. B. Ariza-Villaverde
  • J. Taguas-Ruiz
Article

Abstract

This article presents a mobile Augmented Reality system, called DiedricAR, aimed at the learning of Descriptive Geometry. Thanks to its ability to recreate virtual models in real space, Augmented Reality is a technology suitable for making Descriptive Geometry comprehension and interpretation easier. The DiedricAR application allows students to learn in autonomously way by using their own mobile devices (smartphones and tablets), that work as Augmented Reality displays over training material (DiedricAR exercise workbook) specially designed for the new learning model defined by the European Higher Education System. Compared to some of the existing Augmented Reality systems used to learn Descriptive Geometry, DiedricAR offers the advantage of being specifically developed for mobile devices giving the students the possibility of using ubiquitous learning to its ultimate extent by interacting with the didactical content (i.e. showing the desired intermediate step when solving dihedral exercises). The presentation of DiedricAR is completed by exploring some key items such as the potential benefits for students’ spatial ability, the relationship between application design and user experience, and software performance on several mobile devices.

Keywords

Mobile augmented reality Descriptive geometry Interactive learning environments 

Notes

Acknowledgments

The authors gratefully acknowledge the support from ERDF Project CGL2014-54615-C2-1-R (Spanish Ministry of Economy and Competitiveness).

References

  1. 1.
    Álvarez N, Jaramillo JE, Restrepo J, Trefftz H, Esteban P (2003) Augmented Reality for teaching multi-variate calculus. In Proceedings of the Second International Conference on Multimedia and ICTs in Education (M-ICTE 2003), Badajoz, Spain, pp 1271–1275Google Scholar
  2. 2.
    Arth C, Grasset R, Gruber L, Langlotz T, Mulloni A, Schmalstieg D, Wagner D (2015) The history of mobile augmented reality. Developments in Mobile AR over the last almost 50 years. Technical Report ICG-TR-2015-001. Inst. for Computer Graphics and Vision. Graz University of Technology, AustriaGoogle Scholar
  3. 3.
    Awang Rambli DR, Sulaiman S, Nayan MY (2007) A portable augmented reality lab. In: 1st International Malaysian Educational Technology Convention (IMETC 2007), Johor Bahru, MalaysiaGoogle Scholar
  4. 4.
    Azuma R (1997) A survey of augmented reality. Presence Teleoperators Virtual Environ 6(4):355–385CrossRefGoogle Scholar
  5. 5.
    Azuma R, Billinghurst M, Klinker G (2011) Special section on mobile augmented reality. Comput Graph 35(4):vii–viiiCrossRefGoogle Scholar
  6. 6.
    Bennett G, Seashore H, Wesman (2007) A differential aptitude tests. New York: The Psychological Corporation; 1947 [Spanish official version: Handbook of the DAT-5. Madrid: TEA EdicionesGoogle Scholar
  7. 7.
    Billinghurst M, Kato H, Poupyrev I (2001) The MagicBook: a transitional AR interface. Comput Graph UK 25:745–753. doi: 10.1016/S0097-8493(01)00117-0 CrossRefGoogle Scholar
  8. 8.
    Bogen M, Wind J, Giuliano A (2006) ARiSE - augmented reality in school environments. In: Proceedings of European Conference on Technology Enhanced Learning, Crete, Greece, pp 709–714Google Scholar
  9. 9.
    Carmigniani J, Furht B, Anisetti M, Ceravolo P, Damiani E, Ivkovic M (2011) Augmented reality technologies, systems and applications. Multimed Tools Appl 51(1):341–377. doi: 10.1007/s11042-010-0660-6 CrossRefGoogle Scholar
  10. 10.
    Cheng KH, Tsai CC (2013) Affordances of augmented reality in science learning: suggestions for future research. J Sci Educ Technol 22:449–462. doi: 10.1007/s10956-012-9405-9 CrossRefGoogle Scholar
  11. 11.
    Coulby C, Henessey S, Davies N, Fuller R (2011) The use of mobile technology for work-based assessment: the student experience. Br J Educ Technol 42:251–265. doi: 10.1111/j.1467-8535.2009.01022.x CrossRefGoogle Scholar
  12. 12.
    Cuendet S, Bonnard Q, Do-Lenh S, Dillenbourg P (2013) Designing augmented reality for the classroom. Comput Educ 68:557–569. doi: 10.1016/j.compedu.2013.02.015 CrossRefGoogle Scholar
  13. 13.
    Dias A (2009) Technology enhanced learning and augmented reality: an application on mulltimedia interactive books. Int Bus Econ Rev 1:69–79Google Scholar
  14. 14.
    Gammeter S, Gassmann A, Bossard L, Quack T, Van Gool L (2010) Server-side object recognition and client- side object tracking for mobile augmented reality. In: Computer vision and pattern recognition workshops (CVPRW), 2010 I.E. Computer Society Conference, 13–18 June 2010, pp 1–8. doi:10.1109/ CVPRW.2010.5543248Google Scholar
  15. 15.
    Guay RB (1977) Purdue spatial visualization test - visualization of rotations. Purdue Research Foundation, W. LafayetteGoogle Scholar
  16. 16.
    Guay RB (1980) Spatial ability measurement: a critique and an alternative. Paper presented at the Annual Meeting of the American Educational Research Association, Boston, MA. (ERIC Document Reproduction Service No. ED189166)Google Scholar
  17. 17.
    Hollerer T, Feiner S (2004) Mobile augmented reality. In: Karimi H, Hammad A (eds) Telegeoinformatics: location-based computing and services. Taylor & Francis, pp 221–262Google Scholar
  18. 18.
    Ishii H, Ullmer B (1997) Tangible bits: towards seamless interfaces between people, bits and atoms. In: CHI ‘97: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, New York, USA, pp 234–241Google Scholar
  19. 19.
    Jee HK, Lim S, Youn J, Lee J (2014) An augmented reality-based authoring tool for E-learning applications. Multimed Tools Appl 68:225–235. doi: 10.1007/s11042-011-0880-4 CrossRefGoogle Scholar
  20. 20.
    Jerz R.(2002) Redesigning engineering graphics to include CAD and sketching exercises. In: ASEE Annual Conference Proceedings. Montreal, CanadaGoogle Scholar
  21. 21.
    Johnson L, Smith R, Willis H, Levine A, Haywood K (2011) The 2011 horizon report. The New Media Consortium, Austin, TexasGoogle Scholar
  22. 22.
    Kaufmann H, Schmalstieg D (2003) Mathematics and geometry education with collaborative augmented reality. Comput Graph 27(3):339–345CrossRefGoogle Scholar
  23. 23.
    Kim J, Park I, Lee H (2011) An intelligent context-aware learning system based on mobile augmented reality. Ubiquitous computing and multimedia applications. Commun Comput Inf Sci 151:255–264CrossRefGoogle Scholar
  24. 24.
    Klopfer E, Squire K, Jenkins H (2002) Environmental detectives: PDAs as a window into a virtual simulated world. In: Proceedings of the IEEE International Workshop on Wireless and Mobile Technologies in Education (WMTE’02), Växjö, Sweden, pp 95–98Google Scholar
  25. 25.
    Klopfer E, Perry J, Squire K, Jan M, Steinkuehler C (2005) Mystery at the museum - a collaborative game for museum education. In: CSCL (Computer Supported Cooperative Learning), Taipei, Japan, pp 316–320Google Scholar
  26. 26.
    Ko SM, Chang WS, Ji YG (2013) Usability principles for augmented reality applications in a smartphone environment. Int J Hum Comput Interact 29(8):501–515. doi: 10.1080/10447318.2012.722466 CrossRefGoogle Scholar
  27. 27.
    Kock T (2010) The future directions of mobile augmented reality applications. In: Proceeding Study Tour Pixel. Twente, NetherlandsGoogle Scholar
  28. 28.
    Kourouthanassis PE, Boletsis C, Lekakos G (2015) Demystifying the design of mobile augmented reality applications. Multimed Tools Appl 74:1045–1066. doi: 10.1007/s11042-013-1710-7 CrossRefGoogle Scholar
  29. 29.
    Lazoudis A (2011) The “Science Center to Go” project. In: Proceedings of the “Science Center To Go” EDEN - 2011 Open Classroom Conference, Athens, Greece, pp 27–29Google Scholar
  30. 30.
    Liarokapis F, Mourkoussis N, White M, Darcy J, Sifniotis M, Petridis P, Basu A, Lister PF (2004) Web3D and augmented reality to support engineering education. World Trans Eng Technol Educ 3:1–4Google Scholar
  31. 31.
    Liarokapis F, Petridis P, Lister PF, White M (2002) Multimedia augmented reality interface for E-learning (MARIE). World Trans Eng Technol Educ 1:173–176Google Scholar
  32. 32.
    Linaza MT, Marimon D, Carrasco P, Alvarez R, Montesa J, Aguilar S, Diez G (2012) Evaluation of mobile augmented reality applications for tourism destinations. In: Fuchs M, Ricci F, Cantoni L (eds) Information and communication technologies in tourism 2012. Springer, Vienna, pp 260–271. doi: 10.1007/978-3-7091-1142-0_23 CrossRefGoogle Scholar
  33. 33.
    Loscos C, Ritter Widenfeld H, Roussou M, Meyer A, Tecchia F, Drettakis G (2003) The CREATE project: mixed reality for design, education, and cultural heritage with a constructivist approach. In: Proceedings of ISMAR 03, Tokyo, Japan, pp 282–283Google Scholar
  34. 34.
    Maeda Y, Yoon SY (2013) A meta-analysis on gender differences in mental rotation ability measured by the purdue spatial visualization tests: visualization of rotations (PSVT: R). Educ Psychol Rev 25(1):69–94CrossRefGoogle Scholar
  35. 35.
    Martin-Gutierrez J, Saorín JL, Contero M, Alcañiz M, Pérez-López D, Ortega M (2010) Design and validation of an augmented book for spatial abilities development in engineering students. Comput Graph UK 34:77–91. doi: 10.1016/j.cag.2009.11.003 CrossRefGoogle Scholar
  36. 36.
    Martin-Gutierrez J, Contero M, Alcaniz M (2011) Training spatial ability with augmented reality. The Proceedings of the International Conference “Virtual and Augmented Reality in Education, VARE 2011, Valmiera, Latvia, pp 49–53Google Scholar
  37. 37.
    Martin-Gutierrez J, Navarro R, Acosta M (2011) Mixed reality for development of spatial skills of first-year engineering students. In: 41st ASEE/IEEE Frontiers in Education Conference. Rapid City, USAGoogle Scholar
  38. 38.
    Navarro R, Saorín JL, Contero M, Piquer A, Conesa J (2004) El dibujo de croquis y la visión espacial: su aprendizaje y valoración en la formación del ingeniero a través de las Nuevas Tecnologías. In: XII Congreso Internacional de Innovación Educativa. Barcelona, SpainGoogle Scholar
  39. 39.
    Nincarean D, Ali MB, Halim NDA, Rahman MHA. Procedia - social and behavioral sciences 103(2013): 657–664Google Scholar
  40. 40.
    Papagiannakis G, Singh G, Magnenat-Thalmann N (2008) A survey of mobile and wireless technologies for augmented reality systems. Comput Animat Virtual Worlds 19:3–22. doi: 10.1002/cav.221 CrossRefGoogle Scholar
  41. 41.
    Pellegrino J, Alderton D, Shute V (1984) Understanding spatial ability. Educ Psychol 19(3):239–253CrossRefGoogle Scholar
  42. 42.
    Petrova K (2007) Mobile learning as a mobile business application. Int J Innov Learn 4:1–13. doi: 10.1504/IJIL.2007.011471 CrossRefGoogle Scholar
  43. 43.
    Rosenblum L, Feiner S, Julier S, Swan JE II, Livingston M (2012) The development of mobile augmented reality. In: Dill J, Earnshaw R, Kasik D, Vince J, Wong PC (eds) Expanding the frontiers of visual analytics and visualization. Springer, London, pp 431–448. doi: 10.1007/978-1-4471-2804-5_24 CrossRefGoogle Scholar
  44. 44.
    Schmalstieg D, Fuhrmann A, Hesina G, Szalavari Z, Encarnaçao LM, Gervautz M, Purgathofer W (2002) The Studierstube augmented reality project. Presence Teleoperators Virtual Environ 11(1):33–54CrossRefGoogle Scholar
  45. 45.
    Seichter H, Grasset R, Looser J, Billinghurst M (2009) Multitouch interaction for tangible user interfaces. In: Proceedings of the IEEE International Symposium on Mixed and Augmented Reality 2009 Science and Technology, Orlando, USA, pp 213–214Google Scholar
  46. 46.
    Sorby SA (2001) Assessing and improving spatial visualization skills of engineering students: international collaborations and studies. The Proceedings of the 4th International Conference on Graphics for Arts and Design, São Paulo, pp 1285–1313Google Scholar
  47. 47.
    Specht M, Ternier S, Greller W (2011) Mobile augmented reality for learning: a case study. J Res Cent Educ Technol 7:117–127Google Scholar
  48. 48.
    Strong S, Smith R (2001) Spatial visualization: fundamentals and trends in engineering graphics. J Ind Technol 18:1–5Google Scholar
  49. 49.
    Traxler J (2005) Defining mobile learning. In: Proceedings of the IADIS International Conference Mobile Learning, Malta, pp 261–266Google Scholar
  50. 50.
    Unity3D. http://unity3d.com/unity/. Accessed 4 January 2016
  51. 51.
    Van Krevelen DWF, Poelman R (2010) Fast 3D: a survey of augmented reality technologies, applications and limitations. Int J Virtual Real 9(2):1–20Google Scholar
  52. 52.
    Vandenberg SG, Kuse AR (1978) Mental rotations: a group test of three-dimensional spatial visualization. Percept Mot Skills 47:599–604CrossRefGoogle Scholar
  53. 53.
    Vargas H, Farias G, Sanchez J, Dormido S, Esquembre F (2013) Using augmented reality in remote laboratories. Int J Comput Commun Control 8:622–634. doi:10.15837/ijccc.2013.4.42Google Scholar
  54. 54.
  55. 55.
    Wagner D, Schmalstieg D (2009a) History and future of tracking for mobile phone augmented reality. In: 2009 International Symposium on Ubiquitous Virtual Reality. Gwangju, S. Korea, pp 7–10Google Scholar
  56. 56.
    Wagner D, Schmalstieg D (2009) Making augmented reality practical on mobile phones, part 2. IEEE Comput Graph Appl 29:6–9. doi: 10.1109/mcg.2009.67 CrossRefGoogle Scholar
  57. 57.
    Wu HK, Lee SWY, Chang HY, Liang JC (2013) Current status, opportunities and challenges of augmented reality in education. Comput Educ 62:41–49. doi: 10.1016/j.compedu.2012.10.024 CrossRefGoogle Scholar
  58. 58.
    Yuen S, Yaoyuneyong G, Johnson E (2011) Augmented reality: an overview and five directions for AR in education. J Edu Tech Dev Exch 4:119–140Google Scholar
  59. 59.
    Zagoranski S, Divjak S (2003) Use of augmented reality in education. In: EUROCON 2003, Ljubljana, Slovenia, pp 339–342Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • E. Gutiérrez de Ravé
    • 1
    Email author
  • F. J. Jiménez-Hornero
    • 1
  • A. B. Ariza-Villaverde
    • 1
  • J. Taguas-Ruiz
    • 1
  1. 1.Department of Graphic EngineeringUniversity of CórdobaCórdobaSpain

Personalised recommendations