Multimedia Tools and Applications

, Volume 76, Issue 1, pp 1531–1552 | Cite as

Segmentation data visualizing and clustering

  • Ayman Khlif
  • Max Mignotte


Browsing, searching and retrieving images from large databases based on low level color or texture visual features have been widely studied in recent years but are also often limited in terms of usefulness. In this paper, we propose a new framework that allows users to effectively browse and search in large image database based on their segmentation-based descriptive content and, more precisely, based on the geometrical layout and shapes of the different objects detected and segmented in the scene. This descriptive information, provided at a higher level of abstraction, can be a significant and complementary information which helps the user to browse through the collection in an intuitive and efficient manner. In addition, we study and discuss various ways and tools for efficiently clustering or for retrieving a specific subset or class of images in terms of segmentation-based descriptive content which can also be used to efficiently summarize the content of the image database. Experiments conducted on the Berkeley Segmentation Datasets show that this new framework can be effective in supporting image browsing and retrieval tasks.


Berkeley dataset Clustering algorithm Entropy Database browsing and retrieving images Hierarchical clustering K-means Multidimensional visualization Query-by-drawing Segmentation data clustering Descriptive content based image classification Variation of information Visualization of image databases. 


  1. 1.
    Alvarez C, Id-Oumohmed A, Mignotte M, Nie J-Y (2004) Toward cross-language and cross-media image retrieval. In: 5th Workshop on Cross Langage Evaluation Forum, CLEF 2004 Lecture notes in Computer science, Multilingual information access for text, speech and images, vol 3491, Bath, United Kingdom, pp 676–688Google Scholar
  2. 2.
    Borg I, Groenen P (2005) Modern Multidimensional Scaling: Theory and Applications. SpringerGoogle Scholar
  3. 3.
    Banks S (1990) Signal processing image processing and pattern recognition. Prentice HallGoogle Scholar
  4. 4.
    Bartolini I, Ciaccia P, Patella M (2006) Adaptively browsing image databases with PIBE. Multimed Tools Appl 31(3):269–286CrossRefGoogle Scholar
  5. 5.
    Cayton L, Dasgupta S (2006) Robust euclidean embedding. In: Proceedings of the twentythird International Conference on Machine learning. ACM Press, pp 169–176Google Scholar
  6. 6.
    Ghosh S, Pfeiffer J, Mulligan J (2009) A general framework for reconciling multiple weak segmentations of an image. In: Proceedings of the Workshop on Applications of Computer Vision, (WACV’09), Utah, USA, pp 1–8Google Scholar
  7. 7.
    Heesch D (2008) A survey of browsing models for content based image retrieval. Multimed Tools Appl 40(2):261–284CrossRefGoogle Scholar
  8. 8.
    Id-Oumohmed A, Mignotte M, Nie J-Y (2005) Semantic-based cross-media image retrieval. In: 3rd International Conference on Advances in Pattern Recognition, ICAPR’05, Lecture Notes in Computer Science, volume LNCS 3686, Pattern Recognition and Data Mining, Proceedings Part 2, Bath, United Kingdom (UK), pp 414–423Google Scholar
  9. 9.
    Jiang Y, Zhou Z-H (2004) SOM ensemble-based image segmentation. Neural Process Lett 20(3):171–178CrossRefGoogle Scholar
  10. 10.
    Keuchel J, Kuttel D (2006) Efficient combination of probabilistic sampling approximations for robust image segmentation. In: 28th Annual Symposium of the German Association for Pattern Recognition. DAGM-Symposium, Lecture Notes in Computer Science, Berlin, Germany, pp 41–50Google Scholar
  11. 11.
    Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inform Theory 28(2):129–136MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Leelanupab T, Feng Y, Stathopoulos V, Jose JM (2009) A simulated user study of image browsing using high-level classification. In: Semantic Multimedia, 4th International Conference on Semantic and Digital Media Technologies, SAMT 2009, Graz, Austria, December 2-4, 2009, Proceedings, pp 3–15Google Scholar
  13. 13.
    Meila M (2005) Comparing clusterings - an axiomatic view. In: Proceedings of the 2005 22nd International Conference on Machine Learning (ICML’05), Bonn, Germany, pp 577–584Google Scholar
  14. 14.
    Meila M (2007) Comparing clusterings–an information based distance. J Multivar Anal 98(5):873–895MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Mignotte M (2008) Segmentation by fusion of histogram-based K-means clusters in different color spaces. IEEE Trans Image Process 17(5):780–787MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mignotte M (2010) A label field fusion Bayesian model and its penalized maximum Rand estimator for image segmentation. IEEE Trans Image Process 19(6):1610–1624MathSciNetCrossRefGoogle Scholar
  17. 17.
    Mignotte M (2014) A label field fusion model with a variation of information estimator for image segmentation. Fusion InformationGoogle Scholar
  18. 18.
    Ma Y, Derksen H, Hong W, Wright J (2007) Segmentation of multivariate mixed data via lossy coding and compression. IEEE Trans Pattern Anal Mach Intell 29(9):1546–1562CrossRefGoogle Scholar
  19. 19.
    Mignotte M (2011) A de-texturing and spatially constrained K-means approach for image segmentation. Pattern Recogn lett 32(2):359–367CrossRefGoogle Scholar
  20. 20.
    Mignotte M (2011) MDS-based multiresolution nonlinear dimensionality reduction model for color image segmentation. IEEE Trans Neural Netw 22(3):447–460CrossRefGoogle Scholar
  21. 21.
    Mignotte M (2014) A non-stationary MRF model for image segmentation from a soft boundary map. Pattern Anal Appl 17(1):129–139MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mignotte M (2004) Nonparametric multiscale energy-based model and its application in some imagery problems. IEEE Trans Pattern Anal Mach Intell 26(2):184–197CrossRefGoogle Scholar
  23. 23.
    Mignotte M (2010) A multiresolution markovian fusion model for the color visualization of hyperspectral images. IEEE Trans Geosci Remote Sens 48(12):4236–4247CrossRefGoogle Scholar
  24. 24.
    Martin D, Fowlkes C, Tal D, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th International Conference on Computer Vision (ICCV’01), vol 2, pp 416–423Google Scholar
  25. 25.
    Rachid H, Mignotte M (2009) A hierarchical graph-based Markovian clustering approach for the unsupervised segmentation of textured color images. In: Proceedings of the 16th IEEE International Conference on Image Processing (ICIP’09), pp 1365–1368Google Scholar
  26. 26.
    Schaefer G (2012) Interactive browsing of image repositories - (invited paper). In: Computer Vision and Graphics - International Conference, ICCVG 2012, Warsaw, Poland, September 24-26, 2012. Proceedings, pp 236–244Google Scholar
  27. 27.
    Schaefer G (2010) A next generation browsing environment for large image repositories. Multimed Tools Appl 47(1):105–120CrossRefGoogle Scholar
  28. 28.
    Torgerson W (1952) Multidimensional scaling: I. theory and method. Psychometrika 17:401–419MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Urban J, Jose J, Van Rijsbergen C (2006) An adaptive technique for content-based image retrieval. Multimed Tools Appl 31(1):1–28CrossRefGoogle Scholar
  30. 30.
    Vega-Pons S, Ruiz-Shulcloper J (2011) A survey of clustering ensemble algorithms. Int J Pattern Recogn Artif Intell, IJPRAI 25(3):337–372MathSciNetCrossRefGoogle Scholar
  31. 31.
    Wattuya P, Rothaus K, Prani J-S, Jiang X (2008) A random walker based approach to combining multiple segmentations. In: Proceedings of the 19th International Conference on Pattern Recognition (ICPR’08), Florida, USA, pp 1–4Google Scholar
  32. 32.
    Yang AY, Wright J, Sastry S, Ma Y (2008) Unsupervised segmentation of natural images via lossy data compression. Comput Vis Image Underst 110(2):212–225CrossRefGoogle Scholar
  33. 33.
    Young G, Householder A (1938) Discussion of a set of points in terms of their mutual distances. Psychometrika 3Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Département d’Informatique et de Recherche Opérationnelle (DIRO)Université de Montréal, Faculté des Arts et des SciencesMontréalCanada

Personalised recommendations