Skip to main content
Log in

See in 3D: state of the art of 3D display technologies

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

With advances in lasers, optics, and electronics, many new 3D display technologies have been proposed with prototypes in research labs or have entered the marketplace. Although some of these technologies (such as Stereoscopy) are familiar to people, other technologies, such as holography, remain far-fetched to most. This survey introduces the principles of current popular 3D display technologies, which are generally categorized into four categories: 3D movies, on-stage holograms, holographic projections and volumetric 3D displays. Furthermore, the limitations of each of the aforementioned technologies are deeply analyzed, and comparisons of these technologies are provided. Moreover, we note appropriate application situations for the various technologies. Because computer-generated hologram (CGH) technologies are considered to be the next generation of 3D display technology and have become a dominant direction in 3D display technology development, we address the challenges that CGH is currently facing and provide an insightful analysis of solutions proposed in recent years. Finally, we study the current 3D display applications associated with the four categorized technology principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://reald.com/#/home

  2. http://www.wowvx.it/

  3. https://www.youtube.com/watch?v=pSICZ_7hpho

  4. http://www.realviewimaging.com/?page_id=185

  5. http://www.seereal.com/en/index.php

  6. http://www.phiab.se/products/products

References

  1. 4Deep inwater imaging. http://4-deep.com/, Accessed November 11, 2014

  2. Active8-3D. http://www.activ8-3d.co.uk/, Accessed April 17, 2014

  3. Adhya S, Noé J (2007) A complete ray-trace analysis of the mirage toy. In: Proceedings of SPIE, Education and Training in Optics and Photonics

  4. Benzie P, Watson J, Surman P, Rakkolainen I, Hopf K, Urey H, Sainov V, von Kopylow C (2007) A survey of 3DTV displays: techniques and technologies. IEEE Trans Circuits Syst Video Technol 17(11):1647–1658

    Article  Google Scholar 

  5. Berkela CV, Clarke JA (1997) Characterisation and optimisation of 3D-LCD module design. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems IV, vol 3012, pp 179– 186

  6. Bosch A, Koning A, Meijboom F, McGhie J, Simoons M, Spek P, Bogers A (2005) Dynamic 3D echocardiography in virtual reality. Cardiovasc Ultrasound 3(1):1–4

    Article  Google Scholar 

  7. Buckley E (2011) Holographic laser projection. J Displ Technol 7(3):135–140

    Article  MathSciNet  Google Scholar 

  8. Butler A, Hilliges O, Izadi S, Hodges S, Molyneaux D, Kim D, Kong D (2011) Vermeer: direct interaction with a 360 viewable 3D display

  9. Campos P, Sugand K, Mirza K (2013) Holography in clinical anatomy education: a systematic review. Int J Surg 11(8):706

    Article  Google Scholar 

  10. Colomb T, Montfort F, Kühn J, Aspert N, Cuche E, Marian A, Charrière F, Bourquin S, Marquet P, Depeursinge C (2006) Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy. J Opt Soc Am A 23(12):3177–3190

    Article  Google Scholar 

  11. Computer-generated-holography. http://en.wikipedia.org/wiki/Computer-generated_holography, Accessed April 17, 2014

  12. Dispair. http://displair.com/, Accessed April 17, 2014

  13. Dodgson NA (2005) Autostereoscopic 3D displays. Computer 38(8):31–36

    Article  Google Scholar 

  14. Dong H, Luo Z, Nagano A, Mavridis N (2012) An adaptive treadmill-style locomotion interface and its application in 3D interactive virtual market system. J Intell Serv Robot 5(3):159–167

    Article  Google Scholar 

  15. Dong H, Oshiumi T, Nagano A, Luo Z (2010) Development of a 3D interactive virtual market system with adaptive treadmill control. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp 5238–5244

  16. Dorval RK, Thomas M, Bareau JL (2003) Volumetric three-dimensional display system

  17. Dubois F, Schockaert C, Callens N, Yourassowsky C (2006) Focus plane detection criteria in digital holography microscopy by amplitude analysis. Opt Express 14(13):5895–5908

    Article  Google Scholar 

  18. Emre J, Andrei M, Vincenzo Q, Yuzhong P, R.J. HM (2005) Medicine Meets Virtual Reality 14: Accelerating Change in Healthcare, Next Medical Toolkit

  19. Erik C (2002) Holographic projection screen

  20. Fattal D, Peng Z, Tran T, Vo S, Fiorentino M, Brug J, Beausoleil RG (2013) A multi-directional backlight for a wide-angle, glasses-free 3D display. In: Proceedings of 2013 IEEE Photonics Conference, pp 24–25

  21. Favalora GE (2005) Volumetric 3D displays and application infrastructure. Computer 38(8):37–44

    Article  Google Scholar 

  22. Feleppa EJ (1972) Holography and medicine. IEEE Trans Biomed Eng 19 (3):194–205

    Article  Google Scholar 

  23. Fernando A, Ekmekcioglu E, Worrall S (2013) 3DTV: processing and transmission of 3D video signals

  24. Frere C, Leseberg D, Bryngdahl O (1986) Computer-generated holograms of three-dimensional objects composed of line segments. Opt Soc Am 3(5):726–730

    Article  Google Scholar 

  25. Gabor D (1948) A new microscopic principle. Nature 161(4098):777–778

    Article  Google Scholar 

  26. Gabor D (1949) Microscopy by reconstructed wave-fronts. In: Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences, vol 197, pp 454–487

  27. Gabor D (1951) Microscopy by reconstructed wave fronts: II. In: Proceedings of the Physical Society, Section B, vol 64, p 449

  28. Gabor D (1972) Holography, 1948–1971. Science 177(4046):299–313

    Article  Google Scholar 

  29. Geng J (2008) Volumetric 3D display for radiation therapy planning. Displ Technol 4(4):437–450

    Article  Google Scholar 

  30. Gershun A, Moon PH, Timoshenko G (1939) The light field

  31. Greguss P (1975) Thoughts on the future of holography in biology and medicine. Opt Laser Technol 7(6):253–257

    Article  Google Scholar 

  32. Greguss P (1976) Holographic interferometry in biomedical sciences. Opt Laser Technol 8(4):153–159

    Article  Google Scholar 

  33. Halle MW (1994) Holographic stereograms as discrete imaging systems. In: Proceedings of SPIE, Practical Holography VIII, vol 2176, pp 73–84

  34. Han F, Xu T, Tian C, Hou Z (2010) Investigation on human visual response latency. In: Proceedings of 2010 International Conference on Computer Design and Applications, vol 1, pp 602– 604

  35. Harper G (2010) Holography projects for the evil genius

  36. Hattori T, Ishigaki T, Shimamoto K, Sawaki A, Ishiguchi T, Kobayashi H (1999) Advanced autostereoscopic display for G-7 pilot project. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VI, vol 3639, pp 66–75

  37. Holliman NS, Dodgson NA, Favalora GE, Pockett L (2011) Three-dimensional displays: a review and applications analysis. IEEE Trans Broadcast 57(2):362–371

    Article  Google Scholar 

  38. Holopro. http://www.holopro.com/en/home.html, Accessed April 19, 2014

  39. Horobin R, Kiernan J (eds) (2002) Conn’s Biological Stains: A Handbook of Dyes, Stains and Fluorochromes for Use in Biology and Medicine

  40. Huebschman ML, Munjuluri B, Garner HR (2003) Dynamic holographic 3-D image projection. Opt Express 11(5):437–445

    Article  Google Scholar 

  41. Im HJ, Lee BJ, Hong HK, Shin HH (2010) Auto-stereoscopic 60 view 3D using slanted lenticular lens arrays. Journal of Information Display 8(4):23–26

    Article  Google Scholar 

  42. Im K, Lee S, Park S (2015) A personalized display technology integrating the technologies of bio-signal measurements and multi-view 3D display. Multimed Tools Appl 74(10):1–13

    Article  Google Scholar 

  43. Ishizuka S., Mukai T., Kakeya H. (2014) Viewing zone of an autostereoscopic display with a directional backlight using a convex lens array. J Electron Imaging 23 (1):011002

    Article  Google Scholar 

  44. Ito T (2002) Holographic reconstruction with a 10-mm pixel-pitch reflective liquid-crystal display by use of a light-emitting diode reference light. Opt Lett 27 (16):1406–1408

    Article  Google Scholar 

  45. Jones A, McDowall L, Yamada H, Bolas M, Debevec P (2007) Rendering for an interactive 360 light field display. ACM Trans Graph 26(3):40:1–10

    Article  Google Scholar 

  46. Jorke H, Simon A, Fritz M (2008) Advanced stereo projection using interference filters. In: Proceedings of 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video, pp 177– 180

  47. Joseph J (2010) Applications of holography in fluid mechanics and particle dynamics. Annu Rev Fluid Mech 42(1):531–555

    Article  Google Scholar 

  48. Kim MK (2010) Principles and techniques of digital holographic microscopy. J Photonics Energy 1:018005:1–018005:50

    Google Scholar 

  49. Kimura H, Uchiyama T, Yoshikawa H (2006) Laser produced 3D display in the air. In: ACM SIGGRAPH Emerging Technologies, p 20

  50. Klug M, Burnett T, Fancello A, Heath A, Gardner K, O’Connell S, Newswanger C (2013) A scalable, collaborative, interactive light-field display system. SID Symposium Digest of Technical Papers 44:412–415

    Article  Google Scholar 

  51. Kluge MA, Grant BC, Friend L, Glick L (2010) Seeing is believing: telling the ‘inside’ story of a beginning masters athlete through film. Qualitative Research in Sport and Exercise 2(2):282– 292

    Article  Google Scholar 

  52. Ko K, Webster JM (1995) Holographic imaging of human brain preparations — A step toward virtual medicine. Surg Neurol 44(5):428–432

    Article  Google Scholar 

  53. Korevaar EJ, Spivey B Three dimensional display apparatus, November 14 1989. US Patent 4,881,068

  54. Leister N, Schwerdtner A, Fütterer G, Buschbeck S, Olaya J-C, Flon S (2008) Full-color interactive holographic projection system for large 3D scene reconstruction

  55. Light Blue Optics. http://lightblueoptics.com/, Accessed April 19, 2014

  56. Lightspace. http://www.lightspacetech.com, Accessed April 19, 2014

  57. Liu J, Liu Y, Qi H, Wang Z, Zhang Z (2015) 3D video rendering adaptation: a survey. 3D Research 6(1):1–13

    Article  Google Scholar 

  58. Liu X, Xu H (2011) Spatial three-dimensional display based on the light-field reconstruction. Acta Optica Sinica 31(9):0900121:1–5

    Google Scholar 

  59. Lohmann AW, Paris DP (1967) Binary fraunhofer holograms, generated by computer. Appl Opt 6(10):1739–1748

    Article  Google Scholar 

  60. Lucente M, Hilaire PS, Benton SA, Arias DL, Watlington JA (1992) New approaches to holographic video. In: Proceedings of SPIE, Holographics International, vol 1732, pp 377–386

  61. Lyncée tec. http://www.lynceetec.com/, Accessed November 11, 2014

  62. Mölder A, Sebesta M, Gustafsson M, Gisselson L, Wingren AG, Alm K (2008) Non-invasive, label-free cell counting and quantitative analysis of adherent cells using digital holography. Microscopy 232(2):240–247

    Article  MathSciNet  Google Scholar 

  63. Miku. http://en.wikipedia.org/wiki/Hatsune_Miku, Accessed April 19, 2014

  64. Musion Eyeliner. http://www.eyeliner3d.com/, Accessed April 17, 2014

  65. Nayar SK, Anand VN (2007) 3D display using passive optical scatterers. Computer 40(7):54–63

    Article  Google Scholar 

  66. Nicola SD, Finizio A, Pierattini G, Javidi B, Coppola G, Striano V (2005) Extended focused image in microscopy by digital holography. Opt Soc Am 13(18):6738–6749

    Google Scholar 

  67. Nolte DD (2012) Optical interferometry for biology and medicine

  68. Ozcan A, Isikman S, Mudanyali O, Tseng D, Sencan I (2010) Lensfree on-chip holography facilitates novel microscopy applications. SPIE Newsroom:002947

  69. Pastoor S, Wöpking M (1997) 3-D displays: a review of current technologies. Displays 17(2):100– 110

    Article  Google Scholar 

  70. Pepper’s ghost. http://en.wikipedia.org/wiki/Pepper’s_ghost, Accessed April 17, 2014

  71. Phase Holographic Imaging. http://www.phiab.se/, Accessed November 11, 2014

  72. Polarized 3D system. http://en.wikipedia.org/wiki/Polarized_3D_system#Linearly_polarized_glasses, Accessed May 4, 2015

  73. Rakkolainen I, Hölerer T, DiVerdi S, Olwal A (2009) Mid-air display experiments to create novel user interfaces. Multimed Tools Appl 44(3):389–405

    Article  Google Scholar 

  74. Ray Z (2012) 3-D revolution: the history of modern stereoscopic cinema

  75. RealView. http://www.realviewimaging.com/, Accessed April 19, 2014

  76. Refai HH, Melnik G, Willner. M (2013) CSpace high-resolution volumetric 3D display. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display, vol 8738, pp 11:1– 11:8

  77. Reichelt S, Häussler R, Fütterer G, Leister N (2010) Depth cues in human visual perception and their realization in 3D displays. In: Proceedings of SPIE, Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, vol 7690, pp 76900B:1–12

  78. RGB. http://en.wikipedia.org/wiki/RGB_color_space, Accessed April 18, 2014

  79. Rogers WL, Jones LW, Beierwaltes WH (1973) Imaging in nuclear medicine with incoherent holography. Opt Eng 12(1):13–22

    Article  Google Scholar 

  80. Rollmann W (1800) Zwei neue stereoskopische methoden. Annalen der Physik 166(9):186– 187

    Article  Google Scholar 

  81. Sando Y, Itoh M, Yatagai T (2003) Holographic three-dimensional display synthesized from three-dimensional Fourier spectra of real existing objects. Opt Lett 28(24):2518– 2520

    Article  Google Scholar 

  82. Schipper RJ, Coddington JL Three-dimensional display, July 9 1963. US Patent 3,097,261

  83. Shankar PM, Gupta SN, Gupta HM (1982) Applications of coherent optics and holography in biomedical engineering. IEEE Trans Biomed Eng BME-29(1):8–15

    Article  Google Scholar 

  84. Smalley DE, Smithwick QYJ, Bove Jr. VM, Barabas J, Jolly S (2013) Anisotropic leaky-mode modulator for holographic video displays. Nature 498:313–317

    Article  Google Scholar 

  85. Spatial light modulator (SLM). http://en.wikipedia.org/wiki/Spatial_light_modulator, Accessed April 17, 2014

  86. Stadelmaier A, Massig JH (2000) Compensation of lens aberrations in digital holography. Opt Lett 25(22):1630–1632

    Article  Google Scholar 

  87. Sullivan A (2004) DepthCube solid-state 3D volumetric display. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems XI, vol 5291, pp 279–284

  88. Sung Y, Choi W, Fang-Yen C, Badizadegan K, Dasari RR, Feld MS (2010) Optical diffraction tomography for high resolution live cell imaging. Opt Express 17(1):266– 277

    Article  Google Scholar 

  89. SuperD. http://www.superd.com.cn/en/, Accessed April 19, 2014

  90. Turinsky AL, Fanea E, Trinh Q, Wat S, HallgrÄ-msson B, Dong X, Shu X, Stromer JN, Hill JW, Edwards C, Grosenick B, Yajima M, Sensen CW (2008) CAVEman: standardized anatomical context for biomedical data mapping. Anat Sci Educ 1(1):10–18

    Article  Google Scholar 

  91. Turney B (2007) Anatomy in a modern medical curriculum. Ann R Coll Surg Engl 89(2):104–107

    Article  Google Scholar 

  92. Virtual Concert. http://en.wikipedia.org/wiki/Virtual_concert, Accessed October 28, 2014

  93. Vision optics GmbH Chemnitz. http://www.visionoptics.de/index.php?id=8&L=1, Accessed April 17, 2014

  94. Visser HD, Watson MO, Salvado O, Passenger JD (2011) Progress in virtual reality simulators for surgical training and certification. Med J Aust 194 (4):S38–S40

    Google Scholar 

  95. Wang JJ, Walters F, Liu X, Sciortino P, Deng X (2007) High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl Phys Lett 90(6):1– 3

    Google Scholar 

  96. Waters JP (1966) Holographic image synthesis utlizing theoratical methods. Appl Phys Lett 9(11):405–407

    Article  Google Scholar 

  97. Waterston SW, Stewart IJ (2005) Survey of clinicians’ attitudes to the anatomical teaching and knowledge of medical students. Clin Anat 18(5):380–384

    Article  Google Scholar 

  98. Woodgate GJ, Harrold J, Jacobs AMS, Moseley RR, Ezra D (2000) Flat-panel autostereoscopic displays: characterization and enhancement. In: Proceedings of SPIE, Stereoscopic Displays and Virtual Reality Systems VII, vol 3957, pp 153–164

  99. XpanD. http://www.xpand.me/products/universal-3d-glasses-x103/, Accessed April 21, 2014

  100. XpanD3D. http://en.wikipedia.org/wiki/XpanD_3D, Accessed April 21, 2014

  101. Yagi A, Imura M, Kuroda Y, 360° fog projection interactive display O. Oshiro. (2011). In: SIGGRAPH Asia Emerging Technologies, pp 19:1–1

  102. Yan C, Liu X, Li H, Xia X, Lu H, Zheng W (2009) Color three-dimensional display with omnidirectional view based on a light-emitting diode projector. Appl Opt 48(22):4490– 4495

    Article  Google Scholar 

  103. Yaras F, Kang H, Onural L (2010) State of the art in holographic displays: a survey. J Disp Technol 6(10):443–454

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Deanship of Scientific Research at King Saud University, Riyadh, Saudi Arabia, through the International Research Group Program under Grant IRG14-30.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiwei Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Dong, H., Alelaiwi, A. et al. See in 3D: state of the art of 3D display technologies. Multimed Tools Appl 75, 17121–17155 (2016). https://doi.org/10.1007/s11042-015-2981-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2981-y

Keywords

Navigation