Skip to main content
Log in

Research of incoherence rotated chaotic measurement matrix in compressed sensing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Measurement matrix construction is the hot issue of compressed sensing. How to construct a measurement matrix of good performance and easy hardware implementation is the main research problem in compressed sensing. In this paper, we present a novel simple and efficient measurement matrix named Incoherence Rotated Chaotic (IRC) matrix. We take advantage of the well pseudorandom of chaotic sequence, introduce the concept of the incoherence factor and rotation, and adopt QR decomposition to obtain the IRC measurement matrix which is suited for sparse reconstruction. The IRC matrix satisfies the Restricted Isometry Property criterion in sparse reconstruction and has a smaller RIP ratio. Simulations demonstrate IRC matrix has better performance than Gaussian random matrix, Bernoulli random matrix, Fourier matrix and can efficiently work on both natural image and remote sensing image. The peak signal-to-noise ratios of reconstructed images using IRC matrix are improved at 1.5 dB to 2.5 dB at least.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adcock B, Hansen AC, Poon C, Roman B (2013) Breaking the coherence barrier: a new theory for compressed sensing. General Information

  2. Bajwa W, Haupt J, Raz G, Wright SJ, Nowak RD (2007) Toeplitz-structured Compressed Sensing Matrices. In Proceedings of the IEEE Workshop on Statistical Signal Processing, Washington D. C., USA, pp. 294–298

  3. Baraniuk R, Davenport M, DeVore R et al (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263

    Article  MathSciNet  MATH  Google Scholar 

  4. Berinde R, Indyk P (2008) Sparse Recovery Using Sparse Random Matrices, Preprint[online], Avaliable: http://dsp.rice.edu/cs

  5. Candès EJ (2006) Compressive sampling. In Proceedings of the International Congress of Mathematicians vol. 3, pp.1433–1452

  6. Candès EJ (2008) The restricted isometry property and its implications for compressed sensing, Comp. Rendus Acad. des Sci. I, 346(9–10)

  7. Candes E, Romberg J, Tao T (2006) Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(4):489–509

    Article  MathSciNet  MATH  Google Scholar 

  8. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans Information Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  9. DeVore RA (2007) Deterministieeon structions of compressed sensing matrices. J Complex 23(4–6):918–925

    Article  MATH  Google Scholar 

  10. Do TT, Gan L, Nguyen NH et al (2012) Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process 60(1):139–154

    Article  MathSciNet  Google Scholar 

  11. Do TT, Lu G, Nguyen N, Tran TD (2008) Sparsity adaptive matching pursuit algorithm for practical compressed sensing. In Proceedings of the 42nd Asilomar Conference on Signals, Systems and Computers, pp. 581–587

  12. Donoho DL, Elad M (2006) On the stability of the basis pursuit in the presence of noise. Signal Process 3:511–532

    Article  MATH  Google Scholar 

  13. Donoho DL, Tsaig Y, Drori I et al. (2006) Sparse Solution of Underdetermined Linear Equations by Stagewise Orthogonal Matching Pursuit. Technique Report TR-2006-2, Standford University, Department of Statistics

  14. Donoho DL, Tsaig Y, Drori I et al (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121

    Article  MathSciNet  MATH  Google Scholar 

  15. Elad M, Bruckstein AM (2002) A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Transactions on Information Theory, pp. 2558–2567

  16. Huang W, Ye X (2004) Topological complexity, return times and weak disjointness. Ergodic Theory Dyn Syst 24(3):825–846

    Article  MathSciNet  MATH  Google Scholar 

  17. Linh-Trung N, Van Phong D, Hussain Z M, et al. (2008) Compressed sensing using chaos filters. In Proceedings of IEEE Conference on Telecommunication Networks and Applications (ATNAC), pp. 219–223

  18. Logistic Map Wolfram Research [Online]. Available: http://documents.wolfram.com

  19. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  20. Pati YC, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In Proceedings of the Twenty-Seventh Asilomar Conference on Signals, Systems and Computers, pp. 40–44, 1993

  21. Rauhut H (2010) Compressive sensing and structured random matrices, in: M. Fornasier (Ed.), Theoretical Foundations and Numerical Methods for Sparse Recovery. In: Radon Ser. Comput. Appl. Math., vol. 9, de Gruyter, pp. 1–92

  22. Rauhut H, Romberg J, Tropp JA (2012) Restricted isometries for partial random circulant matrices. Appl Comput Harmon Anal 32(2):242–254

    Article  MathSciNet  MATH  Google Scholar 

  23. Rudelson M, Vershynin R (2008) On sparse reconstruction from Fourier and Gaussian measurements. Comm Pure Appl Math 61(8):1025–1045

    Article  MathSciNet  MATH  Google Scholar 

  24. Sharon Y, Wright J, Ma Y (2007) Computation and Relaxation of Conditions for Equivalence between l1and l0 Minimization. CSL Technical Report UILU-ENG-07-2208, Univ. of Illinois, Urbana-Champaign

  25. Sun R, Zhao H, Xu H (2012) The application of improved Hadamard measurement matrix in compressed sensing. In Proceedings of International Conference on Systems and Informatics (ICSAI), pp.1994–1997

  26. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via Orthogonal Matching Pursuit. IEEE Trans Inf Theory 53:4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang H, Maldonado D, Silwal S (2011) A nonparametric-test-based structural similarity measure for digital images. Comput Stat Data Anal 55(11):2925–2936

    Article  MathSciNet  Google Scholar 

  28. Yin W, Morgan S, Yang J, et al. Practical compressive sensing with Toeplitz and circulant matrices. In Proceedings of International Society for Optics and Photonics on Visual Communications and Image Processing, pp. 77440K-77440K-10, 2010

  29. Yu L, Barbot JP, Zheng G et al (2010) Compressive sensing with chaotic sequence. Signal Process Lett 17(8):731–734

    Article  Google Scholar 

  30. Yu NY, Li Y (2013) Deterministic construction of Fourier-based compressed sensing matrices using an almost difference set. Eurasip Journal on Advances in Signal Processing, (14), pp.1324–1336

  31. Yu Y, Petropulu AP, Poor HV (2011) Measurement matrix design for compressive sensing–based MIMO radar. IEEE Trans Signal Process 59(11):5338–5352

    Article  MathSciNet  Google Scholar 

  32. Zhang G, Jiao S, Xu X et al. (2010) Compressed sensing and reconstruction with bernoulli matrices. In Proceedings of International Conference on Information and Automation (ICIA), pp. 455–460

  33. Zhang B, Tong X, Wang W et al (2013) The research of Kronecker product-based measurement matrix of compressive sensing. EURASIP J Wirel Commun Netw 2013(1):1–5

    Article  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Foundation Research Funds for the central Universities (204201kf0242, 204201kf0263), National Natural Science Foundation of China (61572372, 41271398), Shanghai Aerospace Science and Technology Innovation Fund Projects (SAST201425).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwen Chong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Wang, T., Shen, W. et al. Research of incoherence rotated chaotic measurement matrix in compressed sensing. Multimed Tools Appl 76, 17699–17717 (2017). https://doi.org/10.1007/s11042-015-2953-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2953-2

Keywords

Navigation