Multimedia Tools and Applications

, Volume 75, Issue 18, pp 11529–11553 | Cite as

Chaos-based model for encryption and decryption of digital images

  • Fatma Elgendy
  • Amany M. Sarhan
  • Tarek E. Eltobely
  • S. F. El-Zoghdy
  • Hala S. El-sayed
  • Osama S. Faragallah


This paper introduces a secure chaos-based model for ciphering and deciphering of digital images. The proposed approach is composed of successive confusion and diffusion stages. The confusion stage is repeated n rounds using a different key in each round. The output of the confusion stage is subjected to diffusion stage which is repeated m rounds with a different key for each round. The nested iterations in the confusion and diffusion stages with a different key for each round enlarges the key space which enhances the proposed image cryptosystem security level. A security investigation is done on a family of 2D chaotic confusion maps to select the one with highest security level to be used with the proposed image cryptosystem. The results demonstrated that the Standard map has the highest security level among the examined 2D chaotic confusion maps because it is more complicated and it has a large key space. The proposed image cryptosystem is compared to other three recent image cryptosystems using different security analysis factors including statistical tests, key space analysis, information entropy test, maximum deviation analysis, irregular deviation analysis, and avalanche effect differential analysis. The results demonstrated that, the proposed image cryptosystem with Standard map outperforms all of the other examined image encryption techniques from security point of view.


Chaotic map Confusion Diffusion Security evaluation 


  1. 1.
    Abuturab MR (2013) Color image security system based on discrete Hartley transform in gyrator transform domain. Opt Lasers Eng 51(3):317–324CrossRefGoogle Scholar
  2. 2.
    Alvarez G, Li S (2009) Cryptanalyzing a nonlinear chaotic algorithm (NCA) for image encryption. Commun Nonlinear Sci Numer Simul. doi: 10.1016/j.cnsns. 2009.02.033 Google Scholar
  3. 3.
    Amin M, Faragallah OS, Abd El-Latif AA (2009) Chaos-based hash function (CBHF) for cryptographic applications. Chaos, Solitons Fractals. doi: 10.1016/j.chaos.2009.02.001 Google Scholar
  4. 4.
    Askar SS, Karawia AA, Alshamrani A (2015) Image encryption algorithm based on chaotic economic model. Math Probl Eng. Article ID 341729, 1–10Google Scholar
  5. 5.
    Asmita, Lade S (2014) Chaotic encryption technique for color images by coupling two chaotic maps. IJCSNS Int J Comput Sci Netw Sec 14(10)Google Scholar
  6. 6.
    Behnia S, Akhshani A, Mahmodi H, Akhavan A (2008) A novel algorithm for image encryption based on mixture of chaotic maps. Chaos, Solitons Fractals 35:408–19MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Behnia S, Akshshani A, Mahmodi H, Akhavan A (2008) A novel algorithm for image encryption based on mixture of chaotic maps. Chaos, Solitons Fractals 35:40MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen G, Mao Y, Chui CK (2004) A symmetric image encryption scheme based on 3D chaotic cat maps. Chaos, Solitons Fractals 21:749–61MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Crutchfield JP (1998) Spatio-temporal complexity in nonlinear image processing. IEEE Trans Circ Syst 35:770–80MathSciNetCrossRefGoogle Scholar
  10. 10.
    Elashry IF, Faragallah OS, Abbas AM, El-Rabaie S, Abd El-Samie FE. Homomorphic image encryption. J Electron Imaging 18(3):033002Google Scholar
  11. 11.
    Elkamchouchi H, Makar MA (2005) Measuring encryption quality of Bitmap images encrypted with Rijndael and KAMKAR block ciphers. Proceedings of Twenty second National Radio Science Conference (NRSC 2005). pp. C11, Cairo Egypt 15–17Google Scholar
  12. 12.
    Fridrich J (1998) Symmetric ciphers based on two-dimensional chaotic maps. Int J Bifurcat Chaos 8(6):1259–84MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gai S, Yang G, Wan M (2013) Employing quaternion wavelet transform for banknote classification. Neurocompuing 118(8):171–178CrossRefGoogle Scholar
  14. 14.
    Gai S, Yang G, Zhang S (2013) Multiscale texture classification using reduced quaternion wavelet transform. Int J Electron Commun 67(3):233–241CrossRefGoogle Scholar
  15. 15.
    Gao T, Chen Z (2008) A new image encryption algorithm based on hyper-chaos. Phys Lett A 372:394–400CrossRefMATHGoogle Scholar
  16. 16.
    Gao HJ, Zhang YS, Liang SY, Li D (2006) A new chaotic algorithm for image encryption. Chaos, Solitons Fractals 29:393–9CrossRefMATHGoogle Scholar
  17. 17.
    Gong L, Liu X, Zheng F, Zhou N (2013) Flexible multiple-image encryption algorithm based on log-polar transform and double random phase encoding technique. J Mod Opt 60(13):1074–1082CrossRefGoogle Scholar
  18. 18.
    Guan Z, Huang F, Guan W (2005) Chaos-based image encryption algorithm. Phys Lett A 346:153–7CrossRefMATHGoogle Scholar
  19. 19.
    Huang CK, Nien HH, Changchien SK, Shieh HW (2007) Image encryption with chaotic random codes by grey relational grade and Taguchi method. Opt Commun 280:300–10CrossRefGoogle Scholar
  20. 20.
    Hwang H-E (2012) Optical color image encryption based on the wavelength multiplexing using cascaded phase-only masks in Fresnel transform domain. Opt Commun 285(5):567–573CrossRefGoogle Scholar
  21. 21.
    Khan M, Shah T (2014) A literature review on image encryption techniques. 3D Res, 5, 29, 2014. doi: 10.1007/s13319-014-0029-0
  22. 22.
    Kwok HS, Tang KS (2007) A fast image encryption system based on chaotic maps with finite precision representation. Chaos, Solitons Fractals 32(4):1518–29MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Li C (2007) On the security of a class of image encryption schemes. IACR’s Cryptology ePrint Archive, Report 2007/339Google Scholar
  24. 24.
    Lian S (2009) Efficient image or video encryption based on spatiotemporal chaos system. Chaos, Solitons Fractals 40:2509–2519CrossRefMATHGoogle Scholar
  25. 25.
    Lian S, Sun J, Wang Z (2005) A block cipher based on a suitable use of the chaotic standard map. Chaos, Solitons Fractals 26:117–29CrossRefMATHGoogle Scholar
  26. 26.
    Lian SG, Sun J, Wang Z (2005) A block cipher based on a suitable use of chaotic standard map. Chaos, Solitons Fractals 26(1):117–29CrossRefMATHGoogle Scholar
  27. 27.
    Luo Y, Du M (2012) A novel digital image encryption scheme based on spatial-chaos. J Converg Inf Technol (JCIT) 7:3Google Scholar
  28. 28.
    Mao Y, Chen G, Lian S (2003) A novel fast image encryption scheme based on 3D chaotic baker maps. Int J Bifurcation ChaosGoogle Scholar
  29. 29.
    Mishra M, Singh P, Garg C (2014) A New algorithm of encryption and decryption of images using chaotic mapping. Int J Inf Comput Technol 4(7):741–746Google Scholar
  30. 30.
    Nien HH, Huang CK et al (2007) Digital color image encoding and decoding using a novel chaotic random generator. Chaos, Solitons Fractals 32:1070–80CrossRefGoogle Scholar
  31. 31.
    Pareek NK, Patidar V, Sud KK (2006) Image encryption using chaotic logistic map. Image Vision Comput 24:926–34CrossRefGoogle Scholar
  32. 32.
    Pareek NK, Patidar V, Sud KK (2006) Image encryption using chaotic logistic map. Image Vision Comput 24:926–34CrossRefGoogle Scholar
  33. 33.
    Pisarchik AN, Flores-Camona NJ, Carpio-Valadez M (2006) Encryption and decryption of images with chaotic map lattices. Chaos 16:033118-1–6MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Rhouma R, Belghith S (2008) Cryptanalysis of a new image encryption algorithm based on hyper-chaos. Phys Lett A 372:5973–5978CrossRefMATHGoogle Scholar
  35. 35.
    Rhouma R, Belghith S (2008) Cryptanalysis of a spatiotemporal chaotic image/video cryptosystem. Phys Lett A 372:5790–5794CrossRefMATHGoogle Scholar
  36. 36.
    Sathishkumar GA, Bhoopathybagan K, Sriraam N, Venkatachalam SP, Vignesh R (2011) A novel image encryption algorithm using two chaotic maps for medical application. Adv Comput Commun Comput Inf Sci 133:290–299, Berlin-Heidelberg: Springer-VerlagGoogle Scholar
  37. 37.
    Shannon CE (1949) Communication theory of secrecy system. Bell Syst Technol J 28:656–715MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Sun F, Liu S, Li Z, Lü Z (2008) A novel image encryption algorithm based on spatial chaos map. Chaos, Solitons Fractals 38:631–640MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Wang K, Pei L, Zou A, Song ZH (2005) On the security of 3D Cat map based symmetric image encryption scheme. Phys Lett A 343(6):432–439CrossRefMATHGoogle Scholar
  40. 40.
    Wong KW, Kwok BS, Lawk WS (2007) A fast image encryption scheme based on chaotic standard map. Phys Lett A. doi: 10.1016/ j.physleta.2007.12.026 Google Scholar
  41. 41.
    Xiang T, Wong KW, Liao X (2007) Selective image encryption using a spatiotemporal chaotic system. Chaos 17:023115-1–12CrossRefMATHGoogle Scholar
  42. 42.
    Zhang LH, Liao XF, Wang XB (2005) An image encryption approach based on chaotic maps. Chaos, Solitons Fractals 24:759–65MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Zhou N, Wang Y, Gong L (2011) Novel optical image encryption scheme based on fractional Mellin transform. Opt Commun 284(13):3234–3242CrossRefGoogle Scholar
  44. 44.
    Zhou N, Zhang A, Zheng F, Gong L (2014) Novel Image compression-encryption hybrid algorithm based on key-controlled measurement matrix in compressive sensing. Opt Laser Technol 62:152–160CrossRefGoogle Scholar
  45. 45.
    Ziedan IE, Fouad MM, Salem DH (2003) Application of data encryption standard to bitmap and JPEG images. In Proc. 12th National Radio Science Conference (NRSC2003), pp. C16/1–C16Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fatma Elgendy
    • 1
  • Amany M. Sarhan
    • 1
  • Tarek E. Eltobely
    • 1
  • S. F. El-Zoghdy
    • 2
    • 5
  • Hala S. El-sayed
    • 3
  • Osama S. Faragallah
    • 4
    • 5
  1. 1.Department of Computers and Automatic Control EngineeringFaculty of EngineeringTantaEgypt
  2. 2.Department of Mathematics and Computer Science, Faculty of ScienceMenoufia UniversityShebin El-KomEgypt
  3. 3.Department of Electrical Engineering, Faculty of EngineeringMenoufia UniversityShebin El-komEgypt
  4. 4.Department of Computer Science and Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  5. 5.Department of Information Technology, College of Computers and Information TechnologyTaif UniversityAl-HawiyaKingdom of Saudi Arabia

Personalised recommendations