Multimedia Tools and Applications

, Volume 75, Issue 21, pp 13705–13731 | Cite as

A reversible steganographic scheme for VQ indices based on joint neighboring and predictive coding



In this paper, we propose a novel reversible steganographic technique to embed secret data into digital images compressed using vector quantization (VQ). The proposed method is based on joint neighboring and predictive coding. The proposed technique can embed n secret bits into one VQ index, where n = 1, 2, 3, and 4. Our method uses left and upper neighboring VQ indexes and the difference between the current VQ index and the predicted value produced by the median edge detector predictor to achieve a low bit rate. The experimental results show that the proposed approach obtains embedding rates of 1, 2, 3, and 4 bits per index (bpi) with respective average bit rates of 0.409, 0.471, 0.534, and 0.596 bit per pixel (bpp) for a 256 sized codebook. This confirms that the proposed scheme outperforms three similar reversible data hiding schemes in VQ-compressed domain.


Information hiding Steganography Watermarking Reversible data embedding Vector quantization Joint Neighboring Coding (JNC) 


  1. 1.
    Bender W, Gruhl D, Morimoto N, Lu A (1996) Techniques for data hiding. IBM Syst J 35(3–4):313–336CrossRefGoogle Scholar
  2. 2.
    Chang YT, Huang CT, Huang CL, Wang SJ (2015) Data hiding of high compression ratio in VQ indices with neighboring correlations. Multimedia Tools Appl 74(5):1645–1666CrossRefGoogle Scholar
  3. 3.
    Chang CC, Kieu TD, Wu WC (2009) A lossless data embedding technique by joint neighboring coding. Pattern Recogn 42(7):1597–1603MATHCrossRefGoogle Scholar
  4. 4.
    Chang CC, Nguyen TS, Lin CC (2011) A reversible data hiding for VQ indices using locally adaptive coding. J Vis Commun Image Represent 22(7):664–672CrossRefGoogle Scholar
  5. 5.
    Chang CC, Pai PY, Yeh CM, Chan YK (2010) A high payload frequency-based reversible image hiding method. Inf Sci 180(11):2286–2298CrossRefGoogle Scholar
  6. 6.
    Coltuc D (2012) Low distortion transform for reversible watermarking. IEEE Trans Image Process 21(1):412–417MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cox I, Miller M, Bloom J, Fridrich J, Kalker T (2007) Digital watermarking and steganography, Morgan Kauffman, ISBN: 978-0-12-372585-1Google Scholar
  8. 8.
    Davis RM (1978) The data encryption standard in perspective. IEEE Commun Mag 16(6):5–9CrossRefGoogle Scholar
  9. 9.
    Dragoi I-C, Coltuc D (2014) Local-prediction-based difference expansion reversible watermarking. IEEE Trans Image Process 23(4):1779–1790MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gray RM (1984) Vector quantization. IEEE ASSP Mag 1(2):4–29CrossRefGoogle Scholar
  11. 11.
    Gui X, Li X, Yang B (2014) A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding. Signal Process 98:370–380CrossRefGoogle Scholar
  12. 12.
    Hong W, Chen TS (2012) A novel data embedding method using adaptive pixel pair matching. IEEE Trans Inf Forensics Secur 7(1):176–184CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Hu YC, Chen WL, Lo CC, Wu CM, Wen CH (2013) Efficient VQ-based image coding scheme using inverse function and lossless index coding. Signal Process 93(9):2432–2439CrossRefGoogle Scholar
  15. 15.
    Hu Y, Lee H, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circuits Syst Video Technol 19(2):250–260CrossRefGoogle Scholar
  16. 16.
    Kieu TD, Ramroach S (2015) A reversible steganographic scheme for VQ indices based on joint neighboring coding. Expert Syst Appl 42(2):713–722CrossRefGoogle Scholar
  17. 17.
    Kieu TD, Rudder A, Goodridge W (2014) A reversible steganographic scheme for VQ indices based on locally adaptive coding. J Vis Commun Image Represent 25(6):1378–1386CrossRefGoogle Scholar
  18. 18.
    Lee JD, Chiou YH, Guo JM (2013) Lossless data hiding for VQ indices based on neighboring correlation. Inf Sci 221:419–438CrossRefGoogle Scholar
  19. 19.
    Linde Y, Buzo A, Gray RM (1980) An algorithm for vector quantizer design. IEEE Trans Commun 28(1):84–95CrossRefGoogle Scholar
  20. 20.
    Peng F, Li X, Yang B (2014) Improved PVO-based reversible data hiding. Digital Signal Process 25:255–265CrossRefGoogle Scholar
  21. 21.
    Petitcolas FAP, Anderson RJ, Kuhn MG (1999) Information hiding – a survey. Proc IEEE Spec Issue Protect Multimedia Content 87(7):1062–1078Google Scholar
  22. 22.
    Qin C, Chang CC, Huang YH, Liao LT (2013) An inpainting-assisted reversible steganographic scheme using a histogram shifting mechanism. IEEE Trans Circ Syst Video Technol 23(7):1109–1118CrossRefGoogle Scholar
  23. 23.
    Qin C, Chang CC, Chen YC (2013) Efficient reversible data hiding for VQ-compressed images based on index mapping mechanism. Signal Process 93(9):2687–2695CrossRefGoogle Scholar
  24. 24.
    Qin C, Chang CC, Chiu YP (2014) A novel joint data-hiding and compression scheme based on SMVQ and image inpainting. IEEE Trans Image Process 23(3):969–978MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public-key cryptosystems. Commun ACM 21(2):120–126MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Shie SC, Jiang JH (2012) Reversible and high-payload image steganographic scheme based on side-match vector quantization. Signal Process 92(9):2332–2338CrossRefGoogle Scholar
  27. 27.
    Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730MathSciNetCrossRefGoogle Scholar
  28. 28.
    Wang JX, Lu ZM (2009) A path optional lossless data hiding scheme based on VQ joint neighboring coding. Inf Sci 179(19):3332–3348CrossRefGoogle Scholar
  29. 29.
    Weinberger MJ, Seroussi G, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Process 9(8):1309–1324CrossRefGoogle Scholar
  30. 30.
    Wright MA (2001) The advanced encryption standard. Network Secur 2001 10:11–13Google Scholar
  31. 31.
    Yang CH, Weng CY, Wang SJ, Sun HM (2008) Adaptive data hiding in edge areas of images with spatial LSB domain systems. IEEE Trans Inf Forensics Secur 3(3):488–497CrossRefGoogle Scholar
  32. 32.
    Zhang X, Wang S, Qian Z, Feng G (2010) Reversible fragile watermarking for locating tampered blocks in JPEG images. Signal Process 90(12):3026–3036MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Faculty of Science and Technology, Department of Computing and Information TechnologyThe University of the West IndiesSt. AugustineTrinidad and Tobago

Personalised recommendations