Skip to main content
Log in

Improved maximally stable extremal regions based method for the segmentation of ultrasonic liver images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The goal of this paper is to propose a modified maximally stable extremal region (MSER) based method for the segmentation of ultrasound liver images. Firstly, the feature regions including liver lesions are extracted using the modified MSER detector. Unlike the MSER algorithm, the improved MSER detector merely needs dozens of gray levels rather than 256 possible gray levels ranging from 0 to 255. Next, the edges of the liver lesions are detected from the binary images, and a merging strategy is designed to refine the contour of the liver lesion. The last step is the segmentation of the liver lesion according to the refined contour. The segmentation results of ultrasound liver images demonstrate that there is a significant correlation between the liver lesions selected by a medical expert and the liver lesions segmented by the proposed method. A comparison of the proposed method and other segmented methods shows that the proposed method can detect a more accurate contour of liver lesion images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akbari H, Fei BW (2012) 3D ultrasound image segmentation using wavelet support vector machines. Med Phys 39(6):2972–2984

    Article  Google Scholar 

  2. Chen CM, Lu HS (2000) An adaptive snake model for ultrasound image segmentation: Modified trimmed mean filter, ramp integration and adaptive weighting parameters. Ultrason Imaging 22(4):214–236

    Article  Google Scholar 

  3. Chen CM, Lu HHS, Hsiao AT (2001) A dual-snake model of high penetrability for ultrasound image boundary extraction. Ultrasound Med Biol 27(12):1651–1665

    Article  Google Scholar 

  4. Chen CM, Lu HHS, Huang YS (2002) Cell-based dual snake model: A new approach to extracting highly winding boundaries in the ultrasound images. Ultrasound Med Biol 28(8):1061–1073

    Article  Google Scholar 

  5. Chen MF, Zhu HS, Zhu HJ (2013) Segmentation of liver in ultrasonic image applying local optimal threshold method. Imaging Sci J 61(7):579–591

    Article  Google Scholar 

  6. Ciecholewski M (2014) Automatic liver segmentation from 2D CT images using an approximate contour model. J Signal Process Syst 74(2):151–174

    Article  Google Scholar 

  7. Crespo J, Maojo V (1998) New results on the theory of morphological filters by reconstruction. Pattern Recogn 31(4):419–429

    Article  Google Scholar 

  8. Cvancarova M, Albregtsen F, Brabrand K, Samset E (2005) Segmentation of ultrasound images of liver tumors applying snake algorithms and GVF. Int Congr Ser 1281:218–223

    Article  Google Scholar 

  9. Donoser M, Bischof H (2006) Efficient maximally stable extremal region (MSER) tracking. In Proc. Conf Comput Vis Pattern Recognit

  10. Donoser M, Bischof H (2006) 3D segmentation by maximally stable volumes (MSVs). 18th Int Conf Pattern Recog (ICPR) 1:63–66

    Article  Google Scholar 

  11. Elamvazuthi I, Muhd Zain M, Begam KM (2013) Despecking of ultrasound images of bone fracture using multiple filtering algorithms. Math Comput Model 57(1–2):152–168

    Article  Google Scholar 

  12. Fabbrini L, Greco M, Pinelli G (2014) Improved edge enhancing diffusion filter for speckle-corrupted images. IEEE Geosci Remote Sens Lett 11(1):99–103

    Article  Google Scholar 

  13. Feng X, Shen X, Wang Q, Kim J, Hao Z, et al (2013) Learning based ensemble segmentation of anatomical structures in liver ultrasound image. Proc SPIE 8669, Med Imaging 2013: Image Process, 866947; doi:10.1117/12.2006758

  14. Gui Y, Zhang X, Shang Y (2012) SAR image segmentation using MSER and improved spectral clustering, EURASIP J Adv Signal Process, 83

  15. Häme Y, Pollari M (2011) Semi-automatic liver tumor segmentation with hidden Markov measure field model and non-parametric distribution estimation. Med Image Anal

  16. http://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient,2014.

  17. Jiang HY, Cheng, QS (2009) Automatic 3D segmentation of CT images based on active contour models. In D. Thalmann, J.J. Shah, Q.S. Peng (Eds.), Proceedings of IEEE international conference on computer-aided design and computer graphics, pp. 540–543

  18. Kotropoulos C, Pitas I (2003) Segmentation of ultrasonic images using support vector machines. Pattern Recogn Lett 24(4–5):715–727

    Article  MATH  Google Scholar 

  19. Lee WL, Chen YC, Chen YC, Hsieh KS (2005) Unsupervised segmentation of ultrasonic liver images by multi-resolution fractal feature vector. Inf Sci 175:177–199

    Article  Google Scholar 

  20. Lee M, Cho W et al (2012) Segmentation of interest region in medical volume images using geometric deformable model. Comput Biol Med 42:523–537

    Article  Google Scholar 

  21. Li K, Lu Z, Liu W, Yin J (2012) Cytoplasm and nucleus segmentation in cervical smear images using Radiating GVF Snake. Pattern Recogn 45(4):1255–1264

    Article  Google Scholar 

  22. Li C, Xu C, Gui C, Fox MD (2005) Level Set Evolution Without Re-initialization: A New Variational Formulation, In Proceedings of CVPR’05, vol. 1, pp. 430–436

  23. Liu C, Tsai C, Tsui T, Yu S (2012) An improved GVF snake based breast region extrapolation scheme for digital mammograms. Expert Syst Appl 39(4):4505–4510

    Article  Google Scholar 

  24. Masoumi H, Behrad A, Pourmina M, Roosta A (2012) Automatic liver segmentation in MRI images using an iterative watershed algorithm and artificial neural network. Biomed Signal Process Control 7(5):429–437

    Article  Google Scholar 

  25. Matas J, Chum O, Urban M, Pajdla T (2004) Robust wide baseline stereo from maximally stable extremal regions. Image Vis Comput 22(10):761–767

    Article  Google Scholar 

  26. Milko S, Samset E, Kadir T (2008) Segmentation of the liver in ultrasound: a dynamic texture approach. Int J Comput Assist Radiol Surg 3:143–150

    Article  Google Scholar 

  27. Min ZF, Song EM, Jin RC, Li GK (2009) B-scan ultrasound image feature extraction for quantitative grading of fatty liver severity. J Comput Aided Des Comp Graph 21(6):752–757 (In Chinese)

    Google Scholar 

  28. Moraru L, Moldovanu S, Biswas A (2014) Optimization of breast lesion segmentation in texture feature space approach. Med Eng Phys 36(1):129–135

    Article  Google Scholar 

  29. Nowatschin S, Markert M, Weber S, Lueth TC (2007) A system for analyzing intra-operative B-mode ultrasound scans of the liver. Annu Int Conf IEEE Eng Med Biol, pp: 1346–1349

  30. Ostu N (1978) Discriminate and least square threshold selection. Proc Int Conf Pattern Recog, pp: 592–596

  31. Pan S, Dawant BM (2006) Automatic 3D segmentation of the liver from abdominal CT images: a level-set approach. Proc SPIE 4322:128–138

    Article  Google Scholar 

  32. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattern Anal Mach Intell 12:629–639

    Article  Google Scholar 

  33. Pohle R, Toennies KD (2001) Segmentation of medical images using adaptive region growing. Proc SPIE Med Imaging 4322:1337–1346

    Article  MATH  Google Scholar 

  34. Rani N, Thind T (2013) Segmentation of ultrasound images using closest neighbuor approach. Int J Recent Technol Eng 1(6):101–103

    Google Scholar 

  35. Rodtook A, Makhanov S (2013) Multi-feature gradient vector flow snakes for adaptive segmentation of the ultrasound images of breast cancer. J Vis Commun Image R 24:1414–1430

    Article  Google Scholar 

  36. Smeets D, Loeckx D, Stijnen B, Dobbelaer BD, Vandermeulen D, Suetens P (2010) Semi-automatic level set segmentation of liver tumors combining a spiral-scanning technique with supervised fuzzy pixel classification. Med Image Anal 14:13–20

    Article  Google Scholar 

  37. Tian Y, Duan F, Lu K et al (2013) A Flexible 3D Cerebrovascular Extraction from TOF-MRA Images. Neurocomputing 121:392–400

    Article  Google Scholar 

  38. Torbati N, Ayatollahi A, Kermani A (2014) An efficient neural network based method for medical image segmentation. Comput Biol Med 44:76–87

    Article  Google Scholar 

  39. Wu X, Spencer S (2009) etal., Development of an accelerated GVF semi-automatic contouring algorithm for radiotherapy treatment planning. Comput Biol Med 39:650–656

    Article  Google Scholar 

  40. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was part supported by the National Natural Science Foundation of China under grant No. 61473025, the Fundamental Research Funds for the Central Universities (YS1404), Beijing University of Chemical Technology Interdisciplinary Funds for “Visual Media Computing” and the open-project grant funded by the State Key Laboratory of Synthetical Automation for Process Industry at the Northeastern University in China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijiang Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Sheng, J., Zhang, F. et al. Improved maximally stable extremal regions based method for the segmentation of ultrasonic liver images. Multimed Tools Appl 75, 10979–10997 (2016). https://doi.org/10.1007/s11042-015-2822-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2822-z

Keywords

Navigation