Skip to main content
Log in

An improved speckle-reduction algorithm for SAR images based on anisotropic diffusion

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper mainly studies the algorithm of anisotropic diffusion for speckle noise removal of SAR images. Because the Gauss curvature driven diffusion method is sensitive to the noise and is of low efficiency on suppressing the speckle noise, an improved denoising algorithm is proposed. The new algorithm introduces the difference curvature as the diffusion coefficients of the function, which solves the problem that Gauss curvature driven diffusion is sensitive to the speckle noise, further, Tukey’s biweight function is used to control the curvature diffusion model, which can not only better protect edges, but also automatically control the diffusion. Numerical experiments show that the improved algorithm can preserve the information of textures, edges while inhibiting the speckle of SAR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alberto M (1991) Improved multilook techniques applied to SAR and SCANSAR images. IEEE Trans Geosci Remote Sens 23(4):534

    Google Scholar 

  2. Black MJ, Sapiro G, Marimont D et al (1998) Robust anistropic diffusion. IEEE Trans Image Process 7(3):421–432

    Article  Google Scholar 

  3. Catte F et al (1992) Image selective smoothing and edge detection by nonlinear diffusion. SIAM J Num Anal 29(1):193

    Article  MathSciNet  MATH  Google Scholar 

  4. Chakrabarti S, Axel C, Gogineni P (2014) Application of specialpurpose artificial neural networks for speckle reduction in SAR images. Intl J Remote Sens 35(5):1804–18

    Article  Google Scholar 

  5. Charbonnier P, Blanc-Feraud L, Aubert G et al (1997) Deterministic edgepreserving regularization in computed imaging. IEEE Trans Image Process 6(2):298–311

    Article  Google Scholar 

  6. Chen Q, Montesinos P, Sun QS, Heng PA, Xia DS (2010) Adaptive total variation denoising based on difference curvature. Image Vis Comput 28(3):298–306

    Article  Google Scholar 

  7. Di Martino G, Poderico et al (2014) Benchmarking framework for SAR despeckling. IEEE Trans Geosci Remote Sens 52:1615

    Google Scholar 

  8. Donoho DL (1995) Denoising by soft-threshoding. IEEE Trans Inf Theory 41(4):613–627

    Article  Google Scholar 

  9. El- Fallah AI, Ford GE (1997) Mean curvature evolution and surface area scaling in image filtering. IEEE Trans Image Process 6:750–753

    Article  Google Scholar 

  10. Fabbrini L, Greco M, Messina M, Pinelli G (2013) Improved anisotropic diffusion filtering for SAR image despeckling. Electron Lett 49(10):674

    Article  Google Scholar 

  11. Fan H (2014) SAR image despeckling based on adaptive PDE filter and histogram. J Inf Comput Sci 11(7):2283–2290

    Article  Google Scholar 

  12. Frost VS, Stiles JA, Shanmugan KS et al A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans 166

  13. Gao Q, Lu et al (2013) Directionletbased denoising of SAR images using a Cauchy model. Signal Process 93(5):1056–1063

    Article  Google Scholar 

  14. Gupta A, Tripathi A, Bhateja V Despeckling of SAR images via an improved anisotropic diffusion algorithm. Adv Intell Syst 754

  15. Gupta A, Tripathi A, Bhateja V (2013) Despeckling of SAR images in contourlet domain using a new adaptive thresholding. Proceedings of the 1257–1261

  16. Hua X, Pierce LE Ulaby F T.SAR speckle reduction using wavelet denoising and Markov Random field modeling. IEEE Trans Geosci 2211

  17. Huang Q, Wang Y-F, Zhang B-C, Miao H (2006) New anisotropic diffusion method for SAR speckle reduction. Acta Electron Sin 34(9):1553–1557

    Google Scholar 

  18. Jidesh P, George S (2012) Gauss curvaturedriven image inpainting for image reconstruction. J Chin Inst Eng 37(1):122–133

    Article  Google Scholar 

  19. Jin T, Zhou Z-M (2008) Study of key techniques in multi-look processing for vehicle-borne forwardlooking ground penetrating SAR. Dianzi Yu Xinxi Xuebao/J Electron Inf Technol 30(4):925–928

    Article  Google Scholar 

  20. Kuan DT, Sawchuck AA, Strand TC et al Adaptive noise smoothing filter for images with signal dependent noise. IEEE Trans Pattern Anal 177

  21. Lee JS (1980) Digital enhancement and noise filtering by use of local statistics. IEEE Trans Pattern Anal Mach Intell 2(2):165–168

    Article  Google Scholar 

  22. Lee SH, Seo JK (2005) Noise removal with Gauss curvaturedriven diffusion. IEEE Trans Image Process 14(7):904–909

    Article  MathSciNet  Google Scholar 

  23. Li X (2005) Improved wavelet decoding via set theoretic estimation. IEEE Trans Circ Syst Video Technol 15:112

    Google Scholar 

  24. Lopes A, Nezry E, Touzi R Maximum a posteriori speckle filtering and first order texture model in SAR images. Proc IGARSS’90, 2412

  25. Lu B, Wang H, Lin Z (2011) High order Gaussian curvature flow for image smoothing, in Multimedia Technology (ICMT), International 5891

  26. Oliver C, Quegan S (1998) Understanding synthetic aperture radar images. Artech House, New York

    Google Scholar 

  27. Perona P, Malik J (1990) Scale-space and edge detection using anisotropic diffusion. IEEE Trans PAMI 12(7):629–639

    Article  Google Scholar 

  28. Wang Z, Bovik AC (2002) A universal image quality index. In: IEEE Signal Process. Lett. 9:81–84

  29. Yezzi AR (1998) Modified curvature motion for image smoothing and enhancement. IEEE Trans Image Process 7:345–352

    Article  Google Scholar 

  30. Yu Y, Acton S (2002) Speckle reduction anisotropic diffusion. IEEE Tran Image Process 11(11):1260–1270

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of People’s Republic of China (Grant No. 91026005). I wish to thank Professor Wang LingYan who has contributed to the paper improvement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Gun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gun, L., Cuihua, L., Yingpan, Z. et al. An improved speckle-reduction algorithm for SAR images based on anisotropic diffusion. Multimed Tools Appl 76, 17615–17632 (2017). https://doi.org/10.1007/s11042-015-2810-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2810-3

Keywords

Navigation