Multimedia Tools and Applications

, Volume 75, Issue 16, pp 9775–9795 | Cite as

A gender classification scheme based on multi-region feature extraction and information fusion for unconstrained images

  • Guo-Shiang LinEmail author
  • Min-Kuan ChangEmail author
  • Yu-Jui Chang
  • Chia-Hung Yeh


Since gender classification has been interesting in many applications, we proposed a gender classification scheme based on multi-region feature extraction and information fusion in the paper. The proposed gender classification scheme is composed of three parts: pre-processing, multi-region feature extraction, and gender classifier. Before extracting useful information from multiple regions in a facial image, face detection and face orientation correction are performed in the pre-processing. Multi-region feature extraction measures three kinds of features from eyes, internal face, and hair. Since the three kinds of features have their particular properties, a classifier based on decision-level information fusion is utilized to combine these features for gender classification. To evaluate the proposed scheme, a large number of unconstrained images containing different-size faces are captured by using a low-cost webcam and digital cameras. Experimental results show that our proposed scheme can detect facial regions and the location of eyes well. Furthermore, the accuracy of the proposed gender classification scheme is higher than 96 %. These experimental results demonstrate that the proposed scheme can deal with unconstrained images for gender classification.


Gender classification Information fusion Bayesian classifier Support vector machine 


  1. 1.
    Aji S, Jayanthi T, Kaimal MR (2009) Gender identification in face images using KPCA. Proc. of IEEE Conference on Nature & Biologically Inspired Computing, pp. 1414–1418Google Scholar
  2. 2.
    Amayeh G, Bebis G, Nicolescu M (2008) Gender classification from hand shape. Proc IEEE Conf Comput Vis Pattern Recognit 1:1–7Google Scholar
  3. 3.
    Andreu Y, Mollineda RA (2008) The role of face parts in gender recognition. Proc LNCS 5112:945–954Google Scholar
  4. 4.
    Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Disc 2(2):121–167CrossRefGoogle Scholar
  5. 5.
    Cellerino A, Borghetti D, Sartucci F (2004) Sex differences in face gender recognition in humans. Brain Res Bull 63:443–449CrossRefGoogle Scholar
  6. 6.
    Chair Z, Varshney PK (1986) Optimal data fusion in multiple sensor detection systems. IEEE Trans Aerosp Electron Syst AES-22:98–101CrossRefGoogle Scholar
  7. 7.
    Chang CC, Lin CJ (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2(3):1–27CrossRefGoogle Scholar
  8. 8.
    Chen DY, Lin KY (2010) Robust gender recognition for uncontrolled environment of real-life images. IEEE Trans Consum Electron 56:1586–1592CrossRefGoogle Scholar
  9. 9.
    Chi MC, Chen MJ, Yeh CH (2008) Region-of-Interest video coding based on rate and distortion variations for H.263+. Signal Process Image Commun 23:127–142CrossRefGoogle Scholar
  10. 10.
    Dhawan AP (2003) Medical image analysis. WileyGoogle Scholar
  11. 11.
    Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-InterscienceGoogle Scholar
  12. 12.
    Faundez-Zanuy M (2005) Data fusion in biometrics. IEEE Aerosp Electron Syst Mag 20(1):34–38CrossRefGoogle Scholar
  13. 13.
    Garcia C, Tziritas G (1999) Face detection using quantized skin color regions merging and wavelet packet analysis. IEEE Trans Multimed 1:264–277CrossRefGoogle Scholar
  14. 14.
    Gutta S, Weschler H, Phillips PJ (1998) Gender and ethnic classification of human faces using hybrid classifiers. Proc. of IEEE International Conf. on Automatic Face and Gesture Recognition, pp. 194–199Google Scholar
  15. 15.
    Hadid A, Pietikainen M (2008) Combining motion and appearance for gender classification from video sequences. Proc. of IEEE Int’l Conf. on Pattern Recognition, pp. 1–4Google Scholar
  16. 16.
    Laws KI (1980) Rapid texture identification. Proc SPIE 238:376–380CrossRefGoogle Scholar
  17. 17.
    Lee PH, Hung JY, Hung YP (2010) Automatic gender recognition using fusion of facial strips. Proc. of IEEE International Conf. on Pattern Recognition, pp. 1140–1143Google Scholar
  18. 18.
    Li B, Lian XC, Lu BL (2011) Gender classification by combining clothing hair and facial component classifiers. Neurocomputing 76(1):18–27CrossRefGoogle Scholar
  19. 19.
    Lie WN, Su CK (2005) News video classification based on multi-modal information fusion. Proc. of IEEE Int’l Conf. on Image ProcessingGoogle Scholar
  20. 20.
    Lin GS, Chang MK, Chen YL (2011) A passive-blind scheme for image forgery detection based on content-adaptive quantization table estimation. IEEE Trans Circuits Syst Video Technol 21(4):421–434MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lin GS, Chang MK, Chiu ST (2009) A feature-based Scheme for detecting and classifying video-shot transitions based on spatio-temporal analysis and fuzzy classification. Int J Pattern Recognit Artif Intell 23(6):1179–1200CrossRefGoogle Scholar
  22. 22.
    Lu H, Huang Y, Chen Y, Yang D (2008) Automatic gender recognition based on pixel-pattern-based texture feature. J Real-Time Image Proc 3:109–116CrossRefGoogle Scholar
  23. 23.
    Moghaddam B, Yang MH (2002) Learning gender with support faces. IEEE Trans Pattern Anal Mach Intell 24(5):707–711CrossRefGoogle Scholar
  24. 24.
    Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987CrossRefzbMATHGoogle Scholar
  25. 25.
    Poor HV (1994) An introduction to signal detection and estimation. Springer, New YorkCrossRefzbMATHGoogle Scholar
  26. 26.
    Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, CambridgezbMATHGoogle Scholar
  27. 27.
    Shiqi Y, Tieniu T, Kaiqi H, Kui J, Xinyu W (2009) A study on gait-based gender classification. IEEE Trans Image Process 18:1905–1910MathSciNetCrossRefGoogle Scholar
  28. 28.
    Tzanetakis G (2005) Audio-based gender identification using bootstrapping. Proc. of IEEE Pacific Rim Conference on Communications, Computers and signal Processing, pp. 432–433Google Scholar
  29. 29.
    Viola P, Jones M (2004) Robust real-time face detection. Int J Comput Vis 57(2):137–154CrossRefGoogle Scholar
  30. 30.
    Wang Z, Bovik AC, Sheikh HR, Simoncelli EP (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612CrossRefGoogle Scholar
  31. 31.
    Wong KC, Lin WY, Hu YH, Boston N, Zhang XQ (2002) Optimal linear combination of facial regions for improving identification performance. IEEE Trans Syst Man Cybern B Cybern 37(5):1138–1148CrossRefGoogle Scholar
  32. 32.
    Yeh CH, Chen SM, Chern SJ (2008) Content-aware video transcoding via visual attention model analysis. Proc. of IEEE International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 429–432Google Scholar
  33. 33.
    Yeh CH, Fan Jiang SJ, Bai JC, Liou JS, Yeh RN, Wang SC, Sung PY (2010) Vision-based virtual control mechanism via hand gesture recognition. J Comput 21(2)Google Scholar
  34. 34.
    Yu CY, Ouyang Y-C, Wang CM, Chang CI (2010) Adaptive inverse hyperbolic tangent algorithm for dynamic contrast adjustment in displaying scenes. EURASIP J Adv Signal Process 2010:1–20Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and Information EngineeringDa-Yeh UniversityChanghua CountyTaiwan
  2. 2.Department of Electrical EngineeringNational Chung Hsing UniversityTaichungTaiwan
  3. 3.Department of Electrical EngineeringNational Sun Yat-Sen UniversityKaohsiungTaiwan

Personalised recommendations