Skip to main content
Log in

Adaptive directional decomposition in non sub sample contourlet transform domain for single image super resolution

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The crucial point of research about single-image super-resolution is to enhance the size of an image without fiddle its quality. To conserve the quality of an enhanced image, a novel learning based approach in Non Sub Sampled Contourlet Transform (NSCT) domain is proposed in this paper. The NSCT constitute multiscale -multidirectional decomposition of an image. An algorithm, proposed for adaptive multidirectional decomposition picks up the optimal benefit of the directionality offered by NSCT. A sharp initialization, obtained via learning in NSCT domain, is able to generate a high resolution image with minimum edge artifacts. Experiments on various images show the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Aguena MLS, Mascarenhas NDA (2011) Generalization of iterative restoration techniques for super-resolution. SIBGRAPI Conference on Graphics, patterns and Images, pp 258–265

  2. Ashikaga H, Estner HL, Herzka DA, Mcveigh ER, Halperin HR (2014) Quantitative assessment of single-image super-resolution in myocardial scar imaging. IEEE J Translat Eng Health Med 2:1–12

    Article  Google Scholar 

  3. Bevilacqua M, Roumy A, Guillemot CH, Morel M-LA (2012) Low-complexity single-image super-resolution based on nonnegative neighbor embedding. British Machine Vision Conference, pp 1–10

  4. Black MJ, Sapiro G, Marimont DH, Heeger D (1998) Robust anisotropic diffusion. IEEE Trans Image Process 15(3):421–432

    Article  Google Scholar 

  5. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cut. IEEE Trans Pattern Anal Mach Intell 23(11):1222–1239

    Article  Google Scholar 

  6. Chan TM, Zhang J, Pu J, Hua H (2009) Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recogn Lett 30(5):494–502

    Article  Google Scholar 

  7. Dai S, Han M, Wu Y, Gong Y (2007) Bilateral back-projection for single image super resolution. IEEE Proc ICME, pp. 1039–1042

  8. Dai S, Han M, Xu W, Wu Y, Gong Y (2009) SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans Image Process 1(5):969–981

    MathSciNet  Google Scholar 

  9. Fan W, Dit-Yan Yeung (2007) Image hallucination using neighbor embedding over visual primitive manifolds. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 1–7

  10. Kim KI, Kwon Y (2010) Single-image super-resolution using sparse regression and natural image prior. IEEE Trans Pattern Anal Mach Intell 32(6):1127–1133

    Article  MathSciNet  Google Scholar 

  11. Lin Z, Lei Z, Moub X, Zhanga D (2011) FSIM: a feature similarity index for image quality assessment. IEEE Trans Image Process 20(8):2378–2386

    Article  MathSciNet  Google Scholar 

  12. Liu X, Song D, Dong C, Li H (2008) MAP-based image super-resolution reconstruction. World Acad Sci Eng Technol 37:208–211

    Google Scholar 

  13. Lu Y, Do MN (2006) A new contourlet transform with sharp frequency localization. IEEE Proc Int Conf Image Proc, pp 1629–1632

  14. Mallat S, Yu G (2010) Super-resolution with sparse mixing estimators. IEEE Trans Image Process 19(11):2889–2900

    Article  MathSciNet  Google Scholar 

  15. Matsuo Y, Takada R, Iwasaki S, Katto J (2013) Image superresolution using registration of wavelet multi-scale components with affine transformation. IEEE Int Symp Multimed, pp 279–282

  16. Ogawa T, Haseyama M (2011) Adaptive single image superresolution approach using support vector data description. EURASIP J Adv Signal Process. Article ID 852934, doi:10.1155/2011/852934

  17. Qinlan X, Hong CH, Huimin C (2010) Improved example-based single-image superresolution. IEEE CISP, pp 1204–1207

  18. Rushdi M, Ho J (2012) Augmented coupled dictionary learning for image super-resolution. International Conference on Machine Learning and Applications, pp 262–267

  19. Shah AJ, Makwana R, Gupta SB (2013) Single image super-resolution via non sub-sample contourlet transform based learning and a Gabor prior. Int J Comput Appl 64(18):32–38

    Google Scholar 

  20. Su K, Tian Q, Xue Q, Sebe N, Ma J (2005) Neighborhood issue in single-frame image super-resolution. IEEE Int Conf multimedia and Expo (ICME) 2:1123–1127

  21. Tang Y, Yan P, Yuan Y, Li X (2011) Single-image super-resolution via local learning. Int J Mach Learn Cybern, pp 15–23. doi 10.1007/s13042-011-0011-6

  22. Wang P, Tian H, Zheng W (2013) A novel image fusion method based on FRFT-NSCT. Hindawi Publishing Corporation Mathematical Problems in Engineering, Article ID 408232, doi:10.1155/2013/408232

  23. Wang L, Xiang S, Meng G, Wu H, Pan C (2013) Edge-directed single-image super-resolution via adaptive gradient magnitude self-interpolation. IEEE Trans Circuits Syst Video Technol 23(8):1289–1299

    Article  Google Scholar 

  24. Yang MC, Chiang Y, Wang F (2013) A self-learning approach to single image super-resolution. IEEE Transactions on Multimedia 15(3):498–508

    Article  Google Scholar 

  25. Yang J, Wright J, Huang T, Ma Yi (2008) Image super-resolution via sparse representation. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 1–8

  26. Yang J, Wright J, Huang T, Ma Y (2010) Image super-resolution via sparse representation. IEEE Trans Image Process 19(11):2861–2873

    Article  MathSciNet  Google Scholar 

  27. Yang CY, Yang MH (2013) Fast direct super-resolution by simple functions. Proc IEEE Int Conf Comput Vis, pp 561–568

  28. Yu H, Xiang M, Hua H, Chun Q (2008) Face image superresolution through POCS and residue compensation. VIE, pp 494–497

  29. Zhang H, Zhang L, Shen H (2012) A super-resolution reconstruction algorithm for hyperspectral images. Elsevier J Single Process 92:2082–2096

    Article  Google Scholar 

  30. Zhanga J, Zhaob CH, Xiongb R, Mab S, Zhaoa D (2012) Image super-resolution via dual-dictionary learning and sparse representation. IEEE Int Symp Circ Syst (ISCAS), pp 1688–1691

Download references

Acknowledgments

One of the author, Ms. Shah would like to thank Dr. Mita C. Paunwalla for her kind co-operation and encouragment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amisha J. Shah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, A.J., Gupta, S.B. Adaptive directional decomposition in non sub sample contourlet transform domain for single image super resolution. Multimed Tools Appl 75, 8443–8467 (2016). https://doi.org/10.1007/s11042-015-2765-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2765-4

Keywords

Navigation