Skip to main content
Log in

Efficient axial symmetry aware mesh approximation with application to 3D pottery models

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Motivated by the current requirements of digital 3D museums in the low bandwidth networks, we present a novel and efficient approximation algorithm based on axial symmetry of 3D pottery model. Available simplification algorithms suppress detailed features of the mesh without any change to the rest of 3D model. In this paper, we reduce data for mesh representation while preserving the geometric approximation as well as the model quality of the resulting mesh. First, the main symmetry axis of the pottery model is determined and then main body is detected by slicing parallel planes and separation criteria introduced in our proposed algorithm. Second, actual handles are detected based on sector slicing planes using a robust handle separation scheme. Third, every detected part, i.e. main body and handles, is approximated using a novel circle fitting method. Finally, generated vertices are remeshed and create approximated mesh. Experimental results are presented to illustrate superiority and affectivity of our method. Compared with available mesh simplification algorithms and using the same amount of data to represent the model, the proposed approach gives significant improvement in the accuracy of the approximated 3D potteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Abdi H, Williams LJ (2010) Principal component analysis. Wiley Interdisciplinary Reviews. Comput Stat. doi:10.1002/wics.101

    Google Scholar 

  2. Aspert N, Santa-Cruz D, Ebrahimi T (2002) MESH: measuring errors between surfaces using the Hausdorff distance. In: Proceedings International conference on Multimedia and Expo, 2002. ICME ‘02. Proceedings, Vol 1, pp 705–708

  3. Bokeloh M, Wand M, Seidel H-P (2010) A connection between partial symmetry and inverse procedural modeling. ACM Trans Graph 29. doi10.1145/1778765.1778841

  4. Botsch M, Kobbelt L, Pauly M, Alliez P, Levy B (2010) Polygon mesh processing. Peters A K, Massachusetts

    Book  Google Scholar 

  5. Brodsky D, Watson B (2000) Model simplification through refinement. Proc Graph Interface 2000:221–228

    Google Scholar 

  6. Buades A, Coll B, Morel J-M (2008) Nonlocal image and movie denoising. Int J Comput Vis 76(2):123–139. doi:10.1007/s11263-007-0052-1

    Article  Google Scholar 

  7. Castellóa P, Choverb M, Sbertc M, Feixasc M (2014) Reducing complexity in polygonal meshes with view-based saliency. Comput Aided Geom Des 31:279–293. doi:10.1016/j.cagd.2014.05.001

    Article  MathSciNet  Google Scholar 

  8. Chen X, Golovinskiy A, Funkhouser T (2009) A benchmark for 3D mesh segmentation. ACM Trans Graph (SIGGRAPH) 28(3) Art. 73. doi:10.1145/1531326.1531379

  9. Choi KH, Kim HS, Lee KH (2010) An improved mesh simplification method using additional attributes with optimal positioning. Int J Adv Manuf Technol 50(1–4):235–252. doi:10.1007/s00170-009-2484-y

    Article  Google Scholar 

  10. Cohen J, Varshney A, Manocha D, Turk G, Weber H, Agarwal P et al (1996) Simplification envelopes. In: proc. SIGGRAPH 96, pp 119–128

  11. Duda RO, Hart PE (1972) Use of the Hough Transformation to detect lines and curves in pictures, communications of the Association of Computing. Machinery 15:11–15. doi:10.1145/361237.361242

    MATH  Google Scholar 

  12. Gal R, Sorkine O, Mitra NJ and Cohen-OR D (2009) iwires: an analyze-and-edit approach to shape manipulation. ACM Trans. on Graphics (Proc. SIGGRAPH) 28(3):1–10. doi: 10.1145/1531326.1531339

  13. Gao S, Zhao W, Lin H, Yang F, Chen X (2010) Feature suppression based CAD mesh model simplification. Comput Aided Des 42:1178–1188. doi:10.1016/j.cad.2010.05.010

    Article  Google Scholar 

  14. Garland M, Heckbert PS (1997) Surface simplification using quadric error metrics. Comput Graph 31:209–216. doi:10.1145/258734.258849

    Google Scholar 

  15. Gotsman C, Gumhold S, Kobbelt L (2002) Simplification and compression of 3D meshes. Tutorials on multiresolution in geometric modelling. Mathematics and visualization, pp 319–361

  16. Guéziec A (1999) Locally toleranced surface simplification. IEEE Trans Vis Comput Graph 5(2):168–189. doi:10.1109/2945.773810

    Article  Google Scholar 

  17. Heckbert PS, Garland M (1997) Survey of polygonal surface simplification algorithms. SIGGRAPH 97 courses notes

  18. Hoppe H (1996) Progressive meshes. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), New Orleans, Louisiana, United States, 4–9 August, pp 99–108

  19. Hoppe H, DeRose T, Duchamp T, McDonald J, Stuetzle W (1993) Mesh optimization. In: proc. SIGGRAPH 93, pp 19–26

  20. Ioannoua D, Hudab W, Laine AF (1999) Circle recognition through a 2D hough transform and radius histogramming. Image Vis Comput 17:15–26. doi:10.1016/S0262-8856(98)00090-0

    Article  Google Scholar 

  21. Koutsoudis A, Pavlidis G, Arnaoutoglou F, Tsiafakis D, Chamzas1 C (2008) A 3D pottery database for benchmarking content based retrieval mechanisms. In: Pratikakis I, Theoharis T (ed) Eurographics Workshop on 3D Object Retrieval

  22. Luebke D, Erikson C (1997) View-dependent simplification of arbitrary polygonal environments. In: proc. SIGGRAPH 97, pp 199–208

  23. Morigi S, Rucci M (2013) Multilevel mesh simplification. Vis Comput 30(5):479–492. doi:10.1007/s00371-013-0873-6

    Article  Google Scholar 

  24. Pavlidis G, Tsirliganis N, Tsiafakis D, Arnaoutoglou F, Chamzas C, Tsioukas V, Mpakourou E, Mexia A (2006) 3D digitization of monuments: the case of Mani. In: Proceedings of the third International Conference on Museology, June ‘06

  25. Payne A, Cole K, Mainfort R, Goodmaster C, Simon K, Smallwood S, Limp F (2009) The Hampson virtual museum, Center for Advanced Spatial Technologies, Fayetteville, Arkansas, http://hamsponmuseum.cast.uark.edu. Accessed 14 Jun 2009

  26. Ronfard R, Rossignac JR (1996) Full-range approximation of triangulated polyhedra. In: Proceedings Eurographics 15(3):67–76. doi: 10.1111/1467-8659.1530067

  27. Rossignac J, Borrel P (1993) Multi-resolution 3D approximations for rendering complex scenes. In: Falcidieno B, Kunii T (eds) Modeling in computer graphics: methods and applications. Springer-Verlag, Berlin, pp 455–465

    Chapter  Google Scholar 

  28. Schroeder WJ, Zarge JA, Lorensen WE (1992) Decimation of triangle meshes. In: Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques (ACM SIGGRAPH), Chicago, Illinois, United States, 27–31 July, pp 65–70

  29. Shaffer E, Garland M (2001) Efficient adaptive simplification of massive meshes. In: IEEE visualization 01, pp 127–34

  30. Shamir A (2008) A survey on mesh segmentation techniques. Comput Graphics Forum 27:1539–1556. doi:10.1111/j.1467-8659.2007.01103.x

    Article  MATH  Google Scholar 

  31. Shi B-Q, Liang J, Liu Q (2011) Adaptive simplification of point cloud using k-means clustering. Comput Aided Des 43:910–922. doi:10.1016/j.cad.2011.04.001

    Article  Google Scholar 

  32. Shiaw HY, Jacob RJK, Crane GR (2004) The 3D vase museum: a new approach to context in a digital library. In: Proceedings of the ACM/IEEE Conference on Digital Libraries, USA, June 7–11, pp 125–134

  33. Shu Z-Y, Wang G-Z, Dong C-S (2009) Adaptive triangular mesh coarsening with centroidal Voronoi tessellations. J Zhejiang Univ Sci A 10(4):535–545. doi:10.1631/jzus.A0820229

    Article  MathSciNet  MATH  Google Scholar 

  34. Soucy M, Laurendeau D (1996) Multiresolution surface modeling based on hierarchical triangulation. Comput Vis Image Underst 63(1):1–14. doi:10.1006/cviu.1996.0002

    Article  Google Scholar 

  35. Thomas DM, Yalavarthy PK, Karkala D, Natarajan V (2012) Mesh simplification based on edge collapsing could improve computational efficiency in near infrared optical tomographic imaging. Sel Top Quantum Electron 18(4):1493–1501. doi:10.1109/JSTQE.2012.2187276

    Article  Google Scholar 

  36. Tsirliganis N, Pavlidis G, Koutsoudis A, Papadopoulou D, Tsompanopoulos A, Stavroglou K, Politou E, Chamzas C (2002) New ways in digitization and visualization of cultural objects. In: Proc. IEEE DSP 2002, vol. 1, pp 475–478

  37. Turk G (1992) Re-tiling polygonal surfaces. In: SIGGRAPH 92, pp 55–64

  38. Turk G (2001) Texture synthesis on surfaces. In: SIGGRAPH 01, pp 327–354

  39. Valette S, Chassery JM, Prost R (2008) Generic remeshing of 3D triangular meshes with metric-dependent discrete voronoi diagrams. IEEE Trans Vis Comput Graph 14(2):369–381. doi:10.1109/TVCG.2007.70430

    Article  Google Scholar 

  40. Witkin A, Heckbert P (1994) Using particles to sample and control implicit surfaces. In: SIGGRAPH 94, pp 269–277

  41. Zheng Q, Sharf A, Wan G, Li Y, Mitra NJ, Cohen-OR D, Chen B (2010) Non-local scan consolidation for 3d urban scenes. ACM Trans Graph 29(4). doi:10.1145/1778765.1778831

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Ebrahimnezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansouri, S., Ebrahimnezhad, H. Efficient axial symmetry aware mesh approximation with application to 3D pottery models. Multimed Tools Appl 75, 8347–8379 (2016). https://doi.org/10.1007/s11042-015-2753-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2753-8

Keywords

Navigation