Skip to main content
Log in

Real-time abandoned and stolen object detection based on spatio-temporal features in crowded scenes

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Abandoned and stolen object detection is a challenging task due to occlusion, changes in lighting, large perspective distortion, and the similarity in appearance of different people. This paper presents real-time detection methods of abandoned and stolen objects in a complex video. The adaptive background modeling method is applied to stable tracking and the ghost image removing. To detect abandoned and stolen objects, the methods determine spatio-temporal relationship between moving people and suspicious drops. The space first detection method measures the distance between a moving object and a non-moving object in spatial change analysis. The time first detection method conducts temporal change analysis and then spatial change analysis. The potential abandoned object is classified as a definite abandoned or stolen object by two-level detection approach. The time-to-live timer is applied by adjusting several key parameters on each camera and environment. In experiments, we show the experimental results to evaluate our proposed methods using benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Bird N, Atev S, Caramelli N, Martin R, Masoud O, Papanikolopoulos N (2006) Real time, online detection of abandoned objects in public areas. In: Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on, pp 3775–3780. IEEE

  2. Beyan C, Yigit A, Temizel A (2011) Fusion of thermal-and visible-band video for abandoned object detection. J Electron Imag 20(3):033,001–033,001

    Article  Google Scholar 

  3. Cheng S, Luo X, Bhandarkar S (2007) A multiscale parametric background model for stationary foreground object detection. In: Motion and Video Computing, 2007. WMVC’07. IEEE Workshop on, pp 18–18. IEEE

  4. Cho SH, Nam Y, Hong S, Cho W (2010) Locally initiating line-based object association in large scale multiple cameras environment. TIIS 4(3):358–379

    Google Scholar 

  5. Collins R, Lipton A, Kanade T A System for Video Surveillance and Monitoring. In: American Nuclear Society 8th Internal Topical Meeting on Robotics and Remote Systems (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.6273

  6. Corporation I Sourceforge.net: Open computer vision library. http://sourceforge.net/projects/opencvlibrary/

  7. Evangelio RH, Sikora T (2011) Static object detection based on a dual background model and a finite-state machine. EURASIP J Image Video Process 2011:1–11

    Article  Google Scholar 

  8. Fan Q, Pankanti S (2011) Modeling of temporarily static objects for robust abandoned object detection in urban surveillance. In: Advanced Video and Signal-Based Surveillance (AVSS). In: 2011 8th IEEE International Conference on, pp 36–41. doi:10.1109/AVSS.2011.6027290

  9. Fan Q, Pankanti S Robust foreground and abandonment analysis for large-scale abandoned object detection in complex surveillance videos. In: Advanced Video and Signal-Based Surveillance (AVSS), 2012 IEEE Ninth International Conference on, pp 58–63. doi:10.1109/AVSS.2012.62

  10. Ferrando S, Gera G, Regazzoni C (2006) Classification of unattended and stolen objects in video-surveillance system. In: Video and Signal Based Surveillance, 2006. AVSS ’06. IEEE International Conference on, p 21. doi:10.1109/AVSS.2006.32

  11. Ground truth of i-lids bag and vehicle detection challenge (avss 2007) task 1: Abandoned baggage. ftp://motinas.elec.qmul.ac.uk/pub/iLids/iLids_avss2007_ground_truth.zip

  12. Hassanpour R, Atalay V (2004) Camera auto-calibration using a sequence of 2d images with small rotations. Pattern Recogn Lett 25(9):989–997. doi:10.1016/j.patrec.2004.02.011

    Article  Google Scholar 

  13. Heikkila J, Silven O (1997) A four-step camera calibration procedure with implicit image correction. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR ’97), CVPR ’97, pp 1106. http://dl.acm.org/citation.cfm?id=794189.794489. IEEE Computer Society, DC, USA

    Google Scholar 

  14. i lids: i-lids dataset for avss (2007). ftp://motinas.elec.qmul.ac.uk/pub/iLids/

  15. Jing-Ying C, Huei-Hung L, Liang-Gee C (2010) Localized detection of abandoned luggage. EURASIP Journal on Advances in Signal Processing 2010

  16. Lucchese L (2005) Geometric calibration of digital cameras through multi-view rectification. Image Vis Comput 23(5):517–539. doi:10.1016/j.imavis.2005.01.001, http://www.sciencedirect.com/science/article/pii/S0262885605000090

    Article  Google Scholar 

  17. Lu S, Zhang J, Feng D (2007) An efficient method for detecting ghost and left objects in surveillance video. doi:10.1109/AVSS.2007.4425368, pp 540–545

  18. Maddalena L, Petrosino A (2013) Stopped object detection by learning foreground model in videos. IEEE Trans Neural Netw Learn Syst 24(5):723–735

    Article  Google Scholar 

  19. Mathew R, Yu Z, Zhang J (2005) Detecting new stable objects in surveillance video. In: Multimedia Signal Processing, 2005 IEEE 7th Workshop on, pp 1–4. IEEE

  20. Nam Y, Rho S, Park J (2012) Inference topology of distributed camera networks with multiple cameras. Multimedia Tools and Applications pp 1–21. doi:10.1007/s11042-012-0997-0, (to appear in print).

  21. Pets 2006: Performance evaluation of tracking and surveillance 2006 benchmark data (2006). http://www.cvg.rdg.ac.uk/PETS2006/

  22. Pets 2007: Performance evaluation of tracking and surveillance 2007 benchmark data (2007). http://www.cvg.rdg.ac.uk/PETS2007/

  23. Porikli F (2007) Detection of temporarily static regions by processing video at different frame rates. In: Advanced Video and Signal Based Surveillance, 2007. AVSS 2007. IEEE Conference on, pp 236–241. IEEE

  24. Porikli F, Ivanov Y, Haga T (2008) Robust abandoned object detection using dual foregrounds. EURASIP J Adv Signal Process 2008:30

    Article  MATH  Google Scholar 

  25. Sanmiguel JC, MartíNez JM (2012) A semantic-based probabilistic approach for real-time video event recognition. Comput Vis Image Underst 116(9):937–952. doi:10.1016/j.cviu.2012.04.005

    Article  Google Scholar 

  26. Tian Y, Senior A, Lu M (2012) Robust and efficient foreground analysis in complex surveillance videos. Mach Vis Appl 23(5):967–983

    Article  Google Scholar 

  27. Thiel G (2000) Automatic cctv surveillance-towards the virtual guard. Aerospace and Electronic Systems Magazine. IEEE 15(7):3–9. doi:10.1109/62.854018

    Google Scholar 

  28. Tian YL, Feris R, Hampapur A (2008) Real-Time Detection of Abandoned and Removed Objects in Complex Environments. In: The Eighth International Workshop on Visual Surveillance - VS2008. http://hal.inria.fr/inria-00325775. Graeme Jones and Tieniu Tan and Steve Maybank and Dimitrios Makris, Marseille, France

    Google Scholar 

  29. Tripathi RK, Jalal AS, Bhatnagar C (2013) A framework for abandoned object detection from video surveillance. In: Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), 2013 Fourth National Conference on, pp 1–4. IEEE

  30. Wang J, Shi F, Zhang J, Liu Y (2008) A new calibration model of camera lens distortion. Pattern Recog 41(2):607–615. doi:10.1016/j.patcog.2007.06.012, http://www.sciencedirect.com/science/article/pii/S0031320307003020

    Article  MATH  Google Scholar 

  31. Zhang Z (2000) A flexible new technique for camera calibration. Pattern Analysis and Machine Intelligence. IEEE Trans 22(11):1330–1334. doi:10.1109/34.888718

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunyoung Nam.

Additional information

This research was supported by the Soonchunhyang University Research Fund (No. 20140226) and also was supported by the MSIP(Ministry of Science, ICT&Future Planning), Korea, under the C-ITRC(Convergence Information Technology Research Center) support program (NIPA-2014-H0401-14-1022) supervised by the NIPA(National IT Industry Promotion Agency).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nam, Y. Real-time abandoned and stolen object detection based on spatio-temporal features in crowded scenes. Multimed Tools Appl 75, 7003–7028 (2016). https://doi.org/10.1007/s11042-015-2625-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2625-2

Keywords

Navigation