Skip to main content
Log in

High-quality image restoration from partial mixed adaptive-random measurements

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A novel framework to construct an efficient sensing (measurement) matrix, called mixed adaptive-random (MAR) matrix, is introduced for directly acquiring a compressed image representation. The mixed sampling (sensing) procedure hybridizes adaptive edge measurements extracted from a low-resolution image with uniform random measurements predefined for the high-resolution image to be recovered. The mixed sensing matrix seamlessly captures important information of an image, and meanwhile approximately satisfies the restricted isometry property. To recover the high-resolution image from MAR measurements, the total variation algorithm based on the compressive sensing theory is employed for solving the Lagrangian regularization problem. Both peak signal-to-noise ratio and structural similarity results demonstrate the MAR sensing framework shows much better recovery performance than the completely random sensing one. The work is particularly helpful for high-performance and lost-cost data acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alliney S, Ruzinsky S (1994) An algorithm for the minimization of mixed l 1 and l 2 norms with application to bayesian estimation. IEEE Trans Sig Process 42(3):618–627

    Article  Google Scholar 

  2. Baraniuk R, Davenport M, DeVore R, Wakin M (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  4. Candes EJ, Tao T (2005) Decoding by linear programming. Inf Theory, IEEE Trans on 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  5. Candes EJ, Tao T (2006) Near-optimal signal recovery from random projections: universal encoding strategies IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  MATH  Google Scholar 

  6. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intel PAMI 8(6):679–698

    Article  Google Scholar 

  7. Dai QI , Sha WEI (2009) The physics of compressive sensing and the gradient-based recoveryalgorithms. ArXiv:0906.1487

  8. Dai W, Milenkovic O (2009) Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans Inf Theory 55(5):2230–2249

    Article  MathSciNet  Google Scholar 

  9. Daubechies I, Defrise M, De Mol C (2004) An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communs Pure Appl Math 57 (11):1413–1457

    Article  MathSciNet  MATH  Google Scholar 

  10. Do TT, Gan L, Nguyen NH , Tran TD (2012) Fast and efficient compressive sensing using structurally random matrices. IEEE Trans Signal Process 60 (1):139–154

    Article  MathSciNet  Google Scholar 

  11. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  12. Donoho DL, Tsaig Y, Drori I, Starck JL (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121

    Article  MathSciNet  Google Scholar 

  13. Figueiredo MA, Nowak RD, Wright SJ (2007) Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. Selected Topics in Signal Process, IEEE J 1 (4):586–597

    Article  Google Scholar 

  14. Hager WW, Zhang H (2006) A survey of nonlinear conjugate gradient methods. Pac J Optim 2(1):35–58

    MathSciNet  MATH  Google Scholar 

  15. Hale ET, Yin W, Zhang Y (2008) Fixed-point continuation for 1-minimization: methodology and convergence. SIAM J Optim 19(3):1107–1130

    Article  MathSciNet  MATH  Google Scholar 

  16. Keys R (1981) Cubic convolution interpolation for digital image processing. IEEE Trans Acoustics, Speech and Signal Process 29(6):1153–1160

    Article  MathSciNet  MATH  Google Scholar 

  17. Li P, Hastie TJ, Church KW (2006) Very sparse random projections. In: Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 287–296. ACM

  18. Lustig M, Donoho D, Pauly JM (2007) Sparse mri: the application of compressed sensing for rapid mr imaging. Magn Reson Med 58(6):1182–1195

    Article  Google Scholar 

  19. Needell D, Ward R (2013) Stable image reconstruction using total variation minimization. SIAM J Imaging Scie 6(2):1035–1058

    Article  MathSciNet  MATH  Google Scholar 

  20. Osher S, Solé A, Vese L (2003) Image decomposition and restoration using total variation minimization and the h −1 norm. Multiscale Modeling Simul 1(3):349–370

    Article  MathSciNet  MATH  Google Scholar 

  21. Parker JR (1997) Algorithms for Image Processing and Computer Vision. John Wiley & Sons, Inc., New York

    Google Scholar 

  22. Romberg J (2007) Sensing by random convolution. In: Computational Advances in Multi-Sensor Adaptive Processing, 2007. CAMPSAP 2007. 2nd IEEE International Workshop on, pp. 137–140. IEEE

  23. Rudin LI, Osher S, Fatemi E (1992) Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenom 60(1):259–268

    Article  MathSciNet  MATH  Google Scholar 

  24. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MathSciNet  MATH  Google Scholar 

  25. Van Den Berg E, Friedlander MP (2008) Probing the pareto frontier for basis pursuit solutions. SIAM J Sci Comput 31(2):890–912

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang J, Xiong R, Ma S, Zhao D (2011) High-quality image restoration from partial random samples in spatial domain. In: VCIP’11, pp. 1–4

  27. Zhang J, Zhao D, Gao W (2014) Group-based sparse representation for image restoration

Download references

Acknowledgments

Dr. Sha acknowledges Ms. Qing Ye to motivate the compressive sensing work. We also would like to acknowledge the support of China NSF under Grant 61173081 and 61201122; and Guangdong Natural Science Foundation, China, under Grant S2011020001215.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei E. I. Sha or Hongyang Chao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sha, W.E.I., Chao, H. et al. High-quality image restoration from partial mixed adaptive-random measurements. Multimed Tools Appl 75, 6189–6205 (2016). https://doi.org/10.1007/s11042-015-2566-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2566-9

Keywords

Navigation