Multimedia Tools and Applications

, Volume 75, Issue 23, pp 15553–15570 | Cite as

Moving tracking with approximate topological isomorphism



Today, tracking of moving objects in video becomes a highlight in multimedia. This paper proposes a novel method, which is suitable for applying on relatively high-resolution videos that moving objects can be distinguished from their color and shape information. This method matches and tracks multiple moving objects in video by extracting and combining multi-features. With the background reconstruction method we proposed, the moving objects are separated as sub images from the background, we first extract some valuable features from each sub image, especially the topological information. Then, features are applied to a strong classifier which is accumulated with weak feature classifiers. After that, by the initial matching of moving objects, we extract their kinematical features to reinforce the matching method. Finally, experimental results show the effectiveness of the novel algorithm.


Moving tracking Multi-features extraction Multi-features fusion Topological isomorphism Approximate topological isomorphism 



This work is supported by National Natural Science Foundation of China [No. 61262082, 61461039], Key Project of Chinese Ministry of Education [No.212025], Inner Mongolia Science Foundation for Distinguished Young Scholars [2012JQ03], Program of Higher-level talents of Inner Mongolia University [125130], Postgraduate Scientific Research Innovation Foundation of Inner Mongolia [B20141012610Z].

The authors would like to express their heartfelt gratitude to all the volunteers in the experiments and the anonymous reviewers, for their help on this paper.

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this paper.


  1. 1.
    Aggarwal JK, Cai Q (1997) Human motion analysis: a review [C] //nonrigid and articulated motion workshop. Proc IEEE IEEE 1997:90–102Google Scholar
  2. 2.
    Bai Y, Tang M (2014) Robust visual tracking via augmented kernel SVM[J]. Image Vis Comput 32(8):465–475CrossRefGoogle Scholar
  3. 3.
    Chen P, Qian H, Wang W et al (2011) Contour tracking using gaussian particle filter [J]. IET Image Process 5(5):440–447CrossRefGoogle Scholar
  4. 4.
    Chen Q, Sun QS, Heng PA et al (2010) Two-stage object tracking method based on kernel and active contour [J]. Circ Syst Video Tech, IEEE Trans 20(4):605–609CrossRefGoogle Scholar
  5. 5.
    Chorianopoulos K (2013) Collective intelligence within web video [J]. Human-Centric Comput Inf Sci 3(1):1–16CrossRefGoogle Scholar
  6. 6.
    Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking [J]. Pattern Anal Mach Int, IEEE Trans 25(5):564–577CrossRefGoogle Scholar
  7. 7.
    Deb K (2014) Multi-objective optimization [M] //Search methodologies. Springer, US, pp 403–449Google Scholar
  8. 8.
    Einicke GA, White LB (1999) Robust extended Kalman filtering [J]. IEEE Trans Signal Process 47(9):2596–2599MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Foroughi H, Aski BS (2008) Pourreza H. Intelligent video surveillance for monitoring fall detection of elderly in home environments[C]//Computer and Information Technology, 2008. ICCIT 2008. 11th International Conference on. IEEE: 219–224Google Scholar
  10. 10.
    Fu W, Xu Z, Liu S et al (2011) The capture of moving object in video image [J]. J Multimed 6(6):518–525Google Scholar
  11. 11.
    Fu W, Zhou J, Liu S et al (2014) Differential trajectory tracking with automatic learning of background reconstruction [J]. Multimed Tools Appl. doi: 10.1007/ s11042-014-2391-6 Google Scholar
  12. 12.
    Godec M, Roth PM, Bischof H (2013) Hough-based tracking of non-rigid objects [J]. Comput Vis Image Underst 117(10):1245–1256CrossRefGoogle Scholar
  13. 13.
    Goswami K, Hong GS, Kim BG (2013) A novel mesh-based moving object detection technique in video sequence [J]. J Converg 4(3):20–24Google Scholar
  14. 14.
    Hayes GR (2011) The relationship of action research to human-computer interaction [J]. ACM Trans Comput-Human Inter 18(3):15Google Scholar
  15. 15.
    Huang C, Wang S (2010) A cascaded hierarchical framework for moving object detection and tracking [C] //Image Processing (ICIP), 2010 17th IEEE International Conference on. IEEE: 4629–4632Google Scholar
  16. 16.
    Jia X, Lu H, Yang MH (2012) Visual tracking via adaptive structural local sparse appearance model [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1822–1829Google Scholar
  17. 17.
    Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation [J]. Proc IEEE 92(3):401–422CrossRefGoogle Scholar
  18. 18.
    Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection [J]. Pattern Anal Mach Int, IEEE Trans 34(7):1409–1422CrossRefGoogle Scholar
  19. 19.
    Kalman RE (1960) A new approach to linear filtering and prediction problems [J]. J Fluids Eng 82(1):35–45Google Scholar
  20. 20.
    Kim DY, Jeon M (2013) Spatio-temporal auxiliary particle filtering with-norm-based appearance model learning for robust visual tracking [J]. Image Proc, IEEE Trans 22(2):511–522MathSciNetCrossRefGoogle Scholar
  21. 21.
    Kim H, Lee SH, Sohn MK et al (2014) Illumination invariant head pose estimation using random forests classifier and binary pattern run length matrix [J]. Human-Centric Comput Inf Sci 4(1):1–12CrossRefGoogle Scholar
  22. 22.
    Kwak S, Nam W, Han B et al (2011) Learning occlusion with likelihoods for visual tracking [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1551–1558Google Scholar
  23. 23.
    Lee Hung Liew LHL, Beng Yong Lee BYL, Beng Yong Lee BYL et al (2013) Aerial images rectification using non-parametric approach [J]. J Converg 4(1):15–22Google Scholar
  24. 24.
    Li G, Qin L, Huang Q et al (2011) Treat samples differently: Object tracking with semi-supervised online CovBoost [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 627–634Google Scholar
  25. 25.
    Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture [J]. Math Probl Eng. doi: 10.1155/2013/503924 Google Scholar
  26. 26.
    Liu B, Huang J, Yang L et al (2011) Robust tracking using local sparse appearance model and k-selection [C] //Computer Vision and Pattern Recognition (CVPR), 2011 I.E. Conference on. IEEE: 1313–1320Google Scholar
  27. 27.
    Mei X, Ling H (2009) Robust visual tracking using L1 minimization [C] //Computer Vision (ICCV), 2009 I.E. 12th International Conference on. IEEE: 1436–1443Google Scholar
  28. 28.
    Oron S, Bar-Hillel A, Levi D et al (2012) Locally orderless tracking [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1940–1947Google Scholar
  29. 29.
    Stalder S, Grabner H, Van Gool L (2010) Cascaded confidence filtering for improved tracking-by-detection [M] //Computer vision–ECCV 2010. Springer, Berlin, pp 369–382Google Scholar
  30. 30.
    Uddin J, Islam R, Kim JM (2014) Texture feature extraction techniques for fault diagnosis of induction motors [J]. J Converg 5(2):15–20Google Scholar
  31. 31.
    Vezzani R, Cucchiara R (2010) Video surveillance online repository (visor): an integrated framework [J]. Multimed Tools Appl 50(2):359–380CrossRefGoogle Scholar
  32. 32.
    Vipparthi SK, Nagar SK (2014) Color directional local quinary patterns for content based indexing and retrieval [J]. Human-Centric Comput Inf Sci 4(1):1–13CrossRefGoogle Scholar
  33. 33.
    Wang S, Lu H, Yang F et al (2011) Superpixel tracking [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1323–1330Google Scholar
  34. 34.
    Wu Y, Ling H, Yu J et al (2011) Blurred target tracking by blur-driven tracker [C] //Computer Vision (ICCV), 2011 I.E. International Conference on. IEEE: 1100–1107Google Scholar
  35. 35.
    Zhang T, Ghanem B, Liu S et al (2012) Robust visual tracking via multi-task sparse learning[C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 2042–2049Google Scholar
  36. 36.
    Zhang X, Hu W, Qu W et al (2010) Multiple object tracking via species-based particle swarm optimization [J]. Circ Syst Video Tech, IEEE Trans 20(11):1590–1602CrossRefGoogle Scholar
  37. 37.
    Zhong W, Lu H, Yang MH (2012) Robust object tracking via sparsity-based collaborative model [C] //Computer Vision and Pattern Recognition (CVPR), 2012 I.E. Conference on. IEEE: 1838–1845Google Scholar
  38. 38.
    Zhu J, Lao Y, Zheng YF (2010) Object tracking in structured environments for video surveillance applications [J]. Circ Syst Video Tech, IEEE Trans 20(2):223–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.College of Computer ScienceInner Mongolia UniversityHohhotChina

Personalised recommendations