Multimedia Tools and Applications

, Volume 75, Issue 5, pp 2713–2724 | Cite as

Blind image noise level estimation using texture-based eigenvalue analysis

  • Xiaotong Huang
  • Li Chen
  • Jing Tian
  • Xiaolong Zhang


Blind noisy image estimation is useful in many visual processing systems. The challenge lies in accurately estimating the image noise level without any priori information of the image. To tackle this challenge, an iterative texture-based eigenvalue analysis approach is proposed in this paper. The proposed approach utilizes the eigenvalue analysis to mathematically derive a new noise level estimator based on weak-textured image patches. Furthermore, a new texture strength measure is proposed to adaptively select weak-textured patches from the noisy image. Experimental results are provided to demonstrate that the proposed image noise level estimation approach yields superior accuracy and stability performance to that of conventional noise level estimation approaches, so that to improve the performance of image denoising algorithm.


Noise level estimation Eigenvalue analysis Image denoising 



This work was supported by National Natural Science Foundation of China (No. 61105010, 61375017), Program for Outstanding Young Science and Technology Innovation Teams in Higher Education Institutions of Hubei Province, China (No. T201202).


  1. 1.
    Aja-Fernández S, Vegas-Sánchez-Ferrero G, Martín-Fernández M, Alberola-López C (2009) Automatic noise estimation in images using local statistics. Additive and multiplicative cases,. Image Vision Computing 27(6):756–770CrossRefGoogle Scholar
  2. 2.
    Amer A, Dubois E (2005) Fast and reliable structure-oriented video noise estimation. IEEE Trans on Circuits and Systems for Video Technology 15(1):113–118CrossRefGoogle Scholar
  3. 3.
    Chen L, Huang X, Tian J, Fu X (2014) Blind noisy image quality evaluation using a deformable ant colony algorithm. Opt Laser Technol 57:265–270Google Scholar
  4. 4.
    Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095MathSciNetCrossRefGoogle Scholar
  5. 5.
    Gai S, Luo L. (2013) Image denoising using normal inverse Gaussian model in quaternion wavelet domain, Multimedia Tools and Applications, pp 1–18, acceptedGoogle Scholar
  6. 6.
    Huang X, Chen L, Tian J, Zhang X, Fu X (2014) Blind noisy image quality assessment using block homogeneity. Comput Electr Eng 40(3):796–807CrossRefGoogle Scholar
  7. 7.
    Li B, Lin G, Chen Q, Wang H (2013) Image denoising with patch estimation and low patch-rank regularization, Multimedia Tools and Applications, acceptedGoogle Scholar
  8. 8.
    Liu X, Tanaka M, Okutomi M (2013) Single-image noise level estimation for blind denoising. IEEE Trans Image Process 22(12):5226–5237CrossRefGoogle Scholar
  9. 9.
    Lowe D (1999) Object recognition from local scale-invariant features. In: Proceedings IEEE International Conference on Computer Vision, Kerkyra, Greece, pp 1150–1157Google Scholar
  10. 10.
    Muresan D, Parks T (2003) Adaptive principal components and image denoising, In: Proceedings International Conference on Image Processing, Barcelona, Spain, pp 101–104Google Scholar
  11. 11.
    Pyatykh S, Hesser J, Zheng L (2013) Image noise level estimation by principal component analysis. IEEE Trans Image Process 22(2):687–699MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rank K, Lendl M, Unbehauen R (1999) Estimation of image noise variance. IEE Proceedings-Vision, Image and Signal Processing 146(2):80–84CrossRefGoogle Scholar
  13. 13.
    Shin D-H, Park R-H, Yang S, Jung J-H (2005) Block-based noise estimation using adaptive Gaussian filtering. IEEE Trans Consum Electron 51(1):218–226CrossRefGoogle Scholar
  14. 14.
    Tai S-C, Yang S-M (2008) A fast method for image noise estimation using Laplacian operator and adaptive edge detection, In: International Symposium on Communications, Control and Signal Processing, St. Julians, Malta, pp 1077–1081Google Scholar
  15. 15.
    Tian J, Chen L (2012) Image noise estimation using a variation-adaptive evolutionary approach. IEEE Signal Proc Lett 19(7):395–398CrossRefGoogle Scholar
  16. 16.
    Tian J, Ma K-K (2010) Stochastic super-resolution image reconstruction. J Vis Commun Image Represent 21:232–244CrossRefGoogle Scholar
  17. 17.
    Tian J, Ma K-K (2011) A survey on super-resolution imaging. SIViP 5(3):329–342MathSciNetCrossRefGoogle Scholar
  18. 18.
    Tsai DM, Chen MC, Li WC, Chiu WY (2012) A fast regularity measure for surface defect detection. Mach Vis Appl 23(5):869–886CrossRefGoogle Scholar
  19. 19.
    Zeng W, Lu X, Tan X, Tan X (2013) A local structural adaptive partial differential equation for image denoising, Multimedia Tools and Applications, acceptedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiaotong Huang
    • 1
    • 2
  • Li Chen
    • 1
    • 2
  • Jing Tian
    • 1
    • 2
  • Xiaolong Zhang
    • 1
    • 2
  1. 1.School of Computer Science and TechnologyWuhan University of Science and TechnologyWuhanChina
  2. 2.Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial SystemWuhan University of Science and TechnologyWuhanChina

Personalised recommendations